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Let us start by looking at the natural numbers N. Adding two natural numbers
gives a natural number again. Add 0 to this set, and we gain an “identity” element,
that is, a number which when added to any natural number n gives n itself. But
we would like more. What number when added to a natural number n gives the
identity? Can we “subtract” one natural number from another? In order to do
this, we need to move from the semigroup structure of N to a group.

Let (R,+) be an abelian semigroup with identity 0. A semigroup is a set R along
with a binary operation + : R ×R→ R that satisfies the associative property, i.e.
a+ (b+ c) = (a+ b) + c. Some easy examples of semigroups are (N,+) and (Q, ·).

If we have an abelian semigroup with an identity element, that is, an element
0 ∈ R which satisfies a + 0 = a∀a ∈ R, then we would like to ask the following
question: for a ∈ R, does there exist an element b ∈ R such that a + b = 0? That
is, we look for “inverses” of the elements of R. In other words, can we subtract
elements of R? One can, by passing onto what is known as the Grothendieck or
universal group of R.

Let X = R × R. Define an equivalence relation on X as follows: (a, b) ∼ (c, d)
iff ∃ e ∈ R such that a + d + e = b + c + e. Why not simply define two elements
(a, b) and (c, d) to be equivalent if a+ d = b+ c? This will become clear shortly.

We must prove that ∼ is indeed an equivalence relation. Reflexivity and sym-
metry can be seen clearly by the commutativity of R. Let us prove transitivity.
Suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then ∃ e1, e2 ∈ R such that

a+ d+ e1 = b+ c+ e1 (1)

and
c+ f + e2 = d+ e+ e2. (2)

Adding (1) and (2) gives

a+ f + (c+ d+ e1 + e2) = b+ e+ (c+ d+ e1 + e2). (3)

Hence (a, b) ∼ (e, f). It should now be clear why the equivalence relation has been
defined in this way, for cancellation need not hold in the semigroup.

Now, let G(R) = X/∼. We will show that G(R) is a group under the binary
operation

[(a, b)]⊕ [(c, d)] = [(a+ c, b+ d)].

First, we must show that this operation is well-defined. Suppose [(a, b)] = [(a′, b′)]
and [(c, d)] = [(c′, d′)]. Then ∃ e1, e2 ∈ R such that

a+ b′ + e1 = a′ + b+ e1 (4)

and
c+ d′ + e2 = c′ + d+ e2. (5)

Adding (4) and (5) shows that the operation ⊕ is indeed well-defined.
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The identity element of G(R) is [(0, 0)]. But a quick verification shows that
[(0, 0)] = [(a, a)]∀a ∈ R. This immediately indicates that the inverse of an element
[(a, b)] should be [(b, a)], i.e., [(b, a)] =“	[(a, b)]”.

We would like for R to sit inside G(R) in some way. Let a ∈ R. We send this
to the element [(a, 0)] in G(R) and denote it simply by [a]. Then it is clear that
G(R) is exactly equal to the set {[a] 	 [b] : a, b ∈ R}. That is, G(R) is a set in
which the formal differences of elements of R are legalised. Let the map a 7→ [a] be
denoted by i : R → G(R). It is an easy observation that the map i is injective iff
cancellation holds in R, that is, if a+ c = b+ c, then a = b. It is surjective iff R is
already a group.

Let us go back to the question we started with, of how to find the inverses of
natural numbers under addition. Let N0 = N∪{0}. The Grothendieck group G(N0)
is then exactly equal to the set of integers, Z.

We now look at the semigroup R = N0 ∪ {∞}, where ∞ is an element of R
satisfying the following property:

a+∞ =∞ ∀a ∈ R.

What is G(R) in this case? The answer is unexpected. G(R) turns out to be the
trivial group {0}! Let us consider arbitrary [a] ∈ G(R). Then [a]⊕ [∞] = [a+∞] =
[∞]. But since G(R) is a group, one can cancel terms on both sides to get [a] = 0.
What if we consider N with multiplication as the operation? Then G(R) = Q+, the
set of positive rational numbers. How then do we arrive at the set of all rational
numbers Q?

Suppose we had started with an abelian semigroup R and a sub-semigroup S.
Consider the set R×S and a relation defined as follows: (r, s) ∼ (r′, s′) iff ∃ s′′ ∈ S
such that r + s′ + s′′ = r′ + s + s′′. This is an equivalence relation and it can be
seen that [R]	 [S] := (R×S)/∼ is an abelian semigroup in which every element of
the form [(s1, s2)] where s1, s2 ∈ S is invertible with inverse [(s2, s1)]. We can then
see that Q = [Z]	 [N] where the group operation + is multiplication.

Why is G(R) called a “universal” group? We shall see that it is a unique object
in some sense for any abelian semigroup R. In fact, this is true even in the more
general set up of [R]	 [S], where S is a sub-semigroup of R.

Theorem 0.1. Let H be a semigroup with identity and φ : R→ H be a homomor-
phism of semigroups that maps S into invertible elements of H. Then φ extends
uniquely to a homomorphism ψ : [R] 	 [S] → H such that the following diagram
commutes:

R H

[R]	 [S]

φ

i
ψ



THE GROTHENDIECK GROUP 3

Proof. First we prove the uniqueness of ψ. Supose ∃ψ1, ψ2 : [R] 	 [S] → H that
both extend φ. Then

ψ1([(r, s)]) = ψ1(([r]	 [s]))

= ψ1([r])− ψ1([s])

= φ(r)− φ(s)

= ψ2([(r, s)]).

Define ψ : [R]	 [S]→ H by

ψ([(r, s)]) := φ(r)− φ(s).

This is well-defined because φ(s) is invertible ∀s ∈ S, and if (r, s) ∼ (r′, s′), then
∃ s′′ ∈ S such that

r + s′ + s′′ = r′ + s+ s′′.

Hence

φ(r) + φ(s′) + φ(s′′) = φ(r′) + φ(s) + φ(s′′)

and φ(s′′) can be cancelled from both sides. Further, ψ can be seen to be a homo-
morphism and ψ(i(a)) = ψ([a]) = ψ([(a, 0)]) = φ(a)− φ(0) = φ(a). �

Corollary 0.2. Let R1, R2 be abelian semigroups with identity elements. For any
homomorphism φ : R1 → R2, ∃ a homomorphism ψ : G(R1) → G(R2) such that
the following diagram commutes:

R1 R2

G(R1) G(R2)

φ

i1 i2

ψ

Proof. φ̃ := i2 ◦ φ : R1 → G(R2) is a homomorphism such that the image of every
element is invertible. Hence the previous theorem can be applied. �

The Grothendieck group construction is fundamental to a branch of mathematics
known as K-theory. In particular, in order to study the K-theory of C∗-algebras,
let A be a unital C∗-algebra. A C∗-algebra is a ∗-closed, norm closed subalgebra
of B(H) for a Hilbert space H. Let

E∞(A) := t∞n=1{e ∈Mn(A) : e2 = e}.

Here, Mn(A) denotes the set of n × n matrices with entries from A. We define
a relation on E∞(A) as:

e ∼ f ⇐⇒ ∃x, y ∈ A such that xy = e, yx = f.

Then ∼ is an equivalence relation on E∞(A). Let

V (A) := E∞(A)/∼.

Then V (A) is an abelian semigroup with identity, with addition defined as

[e] + [f ] = [

[
e 0
0 f

]
]

K0(A) is then defined as the Grothendieck group of V (A).
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Another group called K1(A) can be defined using unitaries instead of idempo-
tents. These groups are the beginnings of a vast area of mathematics, namely,
operator K theory.
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