

THE GROTHENDIECK GROUP

ARUNDHATHI KRISHNAN

Let us start by looking at the natural numbers \mathbb{N} . Adding two natural numbers gives a natural number again. Add 0 to this set, and we gain an “identity” element, that is, a number which when added to any natural number n gives n itself. But we would like more. What number when added to a natural number n gives the identity? Can we “subtract” one natural number from another? In order to do this, we need to move from the semigroup structure of \mathbb{N} to a group.

Let $(R, +)$ be an abelian semigroup with identity 0. A semigroup is a set R along with a binary operation $+$: $R \times R \rightarrow R$ that satisfies the associative property, i.e. $a + (b + c) = (a + b) + c$. Some easy examples of semigroups are $(\mathbb{N}, +)$ and (\mathbb{Q}, \cdot) .

If we have an abelian semigroup with an identity element, that is, an element $0 \in R$ which satisfies $a + 0 = a \forall a \in R$, then we would like to ask the following question: for $a \in R$, does there exist an element $b \in R$ such that $a + b = 0$? That is, we look for “inverses” of the elements of R . In other words, can we subtract elements of R ? One can, by passing onto what is known as the Grothendieck or universal group of R .

Let $X = R \times R$. Define an equivalence relation on X as follows: $(a, b) \sim (c, d)$ iff $\exists e \in R$ such that $a + d + e = b + c + e$. Why not simply define two elements (a, b) and (c, d) to be equivalent if $a + d = b + c$? This will become clear shortly.

We must prove that \sim is indeed an equivalence relation. Reflexivity and symmetry can be seen clearly by the commutativity of R . Let us prove transitivity. Suppose $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Then $\exists e_1, e_2 \in R$ such that

$$a + d + e_1 = b + c + e_1 \quad (1)$$

and

$$c + f + e_2 = d + e + e_2. \quad (2)$$

Adding (1) and (2) gives

$$a + f + (c + d + e_1 + e_2) = b + e + (c + d + e_1 + e_2). \quad (3)$$

Hence $(a, b) \sim (e, f)$. It should now be clear why the equivalence relation has been defined in this way, for cancellation need not hold in the semigroup.

Now, let $G(R) = X/\sim$. We will show that $G(R)$ is a group under the binary operation

$$[(a, b)] \oplus [(c, d)] = [(a + c, b + d)].$$

First, we must show that this operation is well-defined. Suppose $[(a, b)] = [(a', b')]$ and $[(c, d)] = [(c', d')]$. Then $\exists e_1, e_2 \in R$ such that

$$a + b' + e_1 = a' + b + e_1 \quad (4)$$

and

$$c + d' + e_2 = c' + d + e_2. \quad (5)$$

Adding (4) and (5) shows that the operation \oplus is indeed well-defined.

The identity element of $G(R)$ is $[(0,0)]$. But a quick verification shows that $[(0,0)] = [(a,a)] \forall a \in R$. This immediately indicates that the inverse of an element $[(a,b)]$ should be $[(b,a)]$, i.e., $[(b,a)] = " \ominus [(a,b)] "$.

We would like for R to sit inside $G(R)$ in some way. Let $a \in R$. We send this to the element $[(a,0)]$ in $G(R)$ and denote it simply by $[a]$. Then it is clear that $G(R)$ is exactly equal to the set $\{[a] \ominus [b] : a, b \in R\}$. That is, $G(R)$ is a set in which the formal differences of elements of R are legalised. Let the map $a \mapsto [a]$ be denoted by $i : R \rightarrow G(R)$. It is an easy observation that the map i is injective iff cancellation holds in R , that is, if $a + c = b + c$, then $a = b$. It is surjective iff R is already a group.

Let us go back to the question we started with, of how to find the inverses of natural numbers under addition. Let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. The Grothendieck group $G(\mathbb{N}_0)$ is then exactly equal to the set of integers, \mathbb{Z} .

We now look at the semigroup $R = \mathbb{N}_0 \cup \{\infty\}$, where ∞ is an element of R satisfying the following property:

$$a + \infty = \infty \quad \forall a \in R.$$

What is $G(R)$ in this case? The answer is unexpected. $G(R)$ turns out to be the trivial group $\{0\}!$ Let us consider arbitrary $[a] \in G(R)$. Then $[a] \oplus [\infty] = [a + \infty] = [\infty]$. But since $G(R)$ is a group, one can cancel terms on both sides to get $[a] = 0$. What if we consider \mathbb{N} with multiplication as the operation? Then $G(\mathbb{N}) = \mathbb{Q}^+$, the set of positive rational numbers. How then do we arrive at the set of all rational numbers \mathbb{Q} ?

Suppose we had started with an abelian semigroup R and a sub-semigroup S . Consider the set $R \times S$ and a relation defined as follows: $(r,s) \sim (r',s')$ iff $\exists s'' \in S$ such that $r + s' + s'' = r' + s + s''$. This is an equivalence relation and it can be seen that $[R] \ominus [S] := (R \times S)/\sim$ is an abelian semigroup in which every element of the form $[(s_1, s_2)]$ where $s_1, s_2 \in S$ is invertible with inverse $[(s_2, s_1)]$. We can then see that $\mathbb{Q} = [\mathbb{Z}] \ominus [\mathbb{N}]$ where the group operation $+$ is multiplication.

Why is $G(R)$ called a “universal” group? We shall see that it is a unique object in some sense for any abelian semigroup R . In fact, this is true even in the more general set up of $[R] \ominus [S]$, where S is a sub-semigroup of R .

Theorem 0.1. *Let H be a semigroup with identity and $\phi : R \rightarrow H$ be a homomorphism of semigroups that maps S into invertible elements of H . Then ϕ extends uniquely to a homomorphism $\psi : [R] \ominus [S] \rightarrow H$ such that the following diagram commutes:*

$$\begin{array}{ccc} R & \xrightarrow{\phi} & H \\ & \searrow i & \uparrow \psi \\ & & [R] \ominus [S] \end{array}$$

Proof. First we prove the uniqueness of ψ . Suppose $\exists \psi_1, \psi_2 : [R] \ominus [S] \rightarrow H$ that both extend ϕ . Then

$$\begin{aligned}\psi_1([(r, s)]) &= \psi_1(([r] \ominus [s])) \\ &= \psi_1([r]) - \psi_1([s]) \\ &= \phi(r) - \phi(s) \\ &= \psi_2([(r, s)]).\end{aligned}$$

Define $\psi : [R] \ominus [S] \rightarrow H$ by

$$\psi([(r, s)]) := \phi(r) - \phi(s).$$

This is well-defined because $\phi(s)$ is invertible $\forall s \in S$, and if $(r, s) \sim (r', s')$, then $\exists s'' \in S$ such that

$$r + s' + s'' = r' + s + s''.$$

Hence

$$\phi(r) + \phi(s') + \phi(s'') = \phi(r') + \phi(s) + \phi(s'')$$

and $\phi(s'')$ can be cancelled from both sides. Further, ψ can be seen to be a homomorphism and $\psi(i(a)) = \psi([a]) = \psi([(a, 0)]) = \phi(a) - \phi(0) = \phi(a)$. \square

Corollary 0.2. *Let R_1, R_2 be abelian semigroups with identity elements. For any homomorphism $\phi : R_1 \rightarrow R_2$, \exists a homomorphism $\psi : G(R_1) \rightarrow G(R_2)$ such that the following diagram commutes:*

$$\begin{array}{ccc} R_1 & \xrightarrow{\phi} & R_2 \\ \downarrow i_1 & & \downarrow i_2 \\ G(R_1) & \dashrightarrow^{\psi} & G(R_2) \end{array}$$

Proof. $\tilde{\phi} := i_2 \circ \phi : R_1 \rightarrow G(R_2)$ is a homomorphism such that the image of every element is invertible. Hence the previous theorem can be applied. \square

The Grothendieck group construction is fundamental to a branch of mathematics known as **K-theory**. In particular, in order to study the K-theory of C^* -algebras, let A be a unital C^* -algebra. A C^* -algebra is a $*$ -closed, norm closed subalgebra of $B(H)$ for a Hilbert space H . Let

$$E_\infty(A) := \sqcup_{n=1}^{\infty} \{e \in M_n(A) : e^2 = e\}.$$

Here, $M_n(A)$ denotes the set of $n \times n$ matrices with entries from A . We define a relation on $E_\infty(A)$ as:

$$e \sim f \iff \exists x, y \in A \text{ such that } xy = e, yx = f.$$

Then \sim is an equivalence relation on $E_\infty(A)$. Let

$$V(A) := E_\infty(A)/\sim.$$

Then $V(A)$ is an abelian semigroup with identity, with addition defined as

$$[e] + [f] = \left[\begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix} \right]$$

$K_0(A)$ is then defined as the Grothendieck group of $V(A)$.

Another group called $K_1(A)$ can be defined using unitaries instead of idempotents. These groups are the beginnings of a vast area of mathematics, namely, operator K theory.

REFERENCES

- [1] N. E. Wegge-Olsen, *K-Theory and C*-Algebras- A Friendly Approach*, Oxford University Press, 1993.