
PMATH 336: INTRODUCTION TO GROUP THEORY WITH

APPLICATIONS

NOTES FOR WEEK 3

INSTRUCTOR: ARUNDHATHI KRISHNAN

4. Cyclic Groups

4.1. Properties of Cyclic Groups. We recap the definition of a cyclic group.

Definition 4.1.1. A group G is said to be cyclic if there exists an element a ∈ G such that
G = 〈a〉 = {am | m ∈ Z}.
Example 4.1.2.

(i) The group (Z,+) is cyclic with generators 1 and −1. Recall here that for n ∈ N, “an”
translates to a + a + . . . + a n times and a−1 = −a for a ∈ Z. Clearly any positive
integer n can be written as 1+ . . .+1 n times and negative integer −n as −1− . . .−1
n times. By definition, a0 here is the identity 0.

(ii) The group Zn with addition mod n for n ∈ N is cyclic with generators 1 and (n −
1) ≡ (−1) mod n. In some cases, Zn may have other generators. For example,
Z7 = 〈1〉 = 〈2〉 = 〈3〉 = 〈4〉 = 〈5〉 = 〈6〉! Z8 has generators 1, 3, 5, 7. We will
formalize exactly what generators Zn has in Corollary 4.1.11.

(iii) We already saw that U(10) = 〈3〉 = 〈7〉.
(iv) On the other hand, U(8) is not cyclic. Indeed, U(8) = {1, 3, 5, 7} and 〈1〉 = {1}, 〈3〉 =

{3, 1}, 〈5〉 = {5, 1} and 〈7〉 = {7, 1}.
(v) Is the quaternion group cyclic? Evaluate 〈a〉 for each a ∈ Q = {1,−1, i,−i, j,−j, k,−k}

to check!

We now examine various properties of cyclic groups and subgroups.

Theorem 4.1.3. Let G be a group and a ∈ G. If a has infinite order, then ai = aj if and
only if i = j. If a has finite order, say n ∈ N, then 〈a〉 = {e, a, . . . , an−1}, and ai = aj if and
only if n divides j − i.

Proof. Suppose a has infinite order and ai = aj . Then aj−i = e. But as a has infinite order,
j − i = 0, so j = i. If i = j, of course ai = aj .

Next, suppose a has finite order equal to n, then an = e. It is clear that {e, a, . . . , an−1} ⊂
〈a〉. We are left to show the other inclusion. Suppose ak ∈ 〈a〉. By the division algorithm,
there exist unique q, r ∈ Z such that k = qn + r with 0 ≤ r < n. Hence ak = aqn+r =
(an)qar = eqar = ar, so ak ∈ {e, a, . . . , an−1}.

Finally, we are left to show that if | a | = n, then ai = aj if and only n divides j−i. Suppose
ai = aj , then aj−i = e. By the division algorithm, there exist q, r ∈ Z with 0 ≤ r < n such
that j − i = qn + r. Hence e = aj−i = (an)qar = eqar = ar. But by the definition of order
of an element, n is the least positive integer such that an = e. So we must have r = 0 and
hence j − i = qn, so that n divides j − i.

Conversely, suppose n divides j − i, then there exists q ∈ Z such that j − i = nq. Hence
aj−i = (an)q = e, so that aj = ai.
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�

Theorem 4.1.3 tells us immediately that the order of a cyclic subgroup generated by an
element is equal to the order of the element itself as there are precisely | a | elements in 〈a〉,
both when | a | is finite and infinite. This also explains why we use the same terminology for
the order of both a group and an element of a group.

Corollary 4.1.4. Let G be a group and a ∈ G. Then | a | = | 〈a〉 |.

Proof. In Theorem 4.1.3 we showed that if a has finite order n ∈ N, then 〈a〉 = {e, a, . . . , an−1},
which clearly has n elements. On the other hand, if a is of infinite order, then Theorem 4.1.3
gives that aj 6= ai for distinct i and j in Z. Hence the group 〈a〉 = {e, a, a2, . . . , } is of infinite
order. �

Corollary 4.1.5. Let G be a group and a ∈ G be such that ak = e. Then | a | divides k.

Proof. Let | a | = n. As ak = e = a0, by Theorem 4.1.3, n divides k − 0, that is n|k.
�

Theorem 4.1.3 actually tells us the following. In a cyclic group of order n, multiplication
of powers of a corresponds to the addition of the powers mod n. Indeed, if an = e, then
an+1 = a, an+2 = a2, . . ., and aiaj = a(i+j) mod n for i, j ∈ Z. Hence a cyclic group of order n
behaves exactly like Zn with addition modulo n. Similarly, a cyclic group of order∞ behaves
just like Z with addition, as products of powers of the generator a correspond to adding the
powers of a in Z. We formalize what we mean by “behaves like” when we talk about group
homomorphisms.

In the next theorem, we show that if we know the order of an element a ∈ G, then we can
compute the order of ak for any k ∈ N.

Theorem 4.1.6. Let a be an element of order n in a group and let k be a positive integer.
Then 〈ak〉 = 〈agcd(n,k)〉 and

∣∣ ak ∣∣ = n
gcd(n,k) .

Proof. Let d = gcd(n, k). Then k = dq for some q ∈ Z and ak = (ad)q, so that 〈ak〉 ⊂ 〈ad〉.
To show the other inclusion, recall from the property of the gcd that there exists s, t ∈ Z such
that d = ns+kt. Hence ad = ans+kt = (an)s(ak)t = e(ak)t = (ak)t ∈ 〈ak〉, so that 〈ad〉 ⊂ 〈ak〉.
Thus, in fact, 〈ad〉 = 〈ak〉.

Next, let b be any positive divisor of n. Then (ab)
n
b = an = e, so that

∣∣ ab ∣∣ ≤ n
b . But if

i < n
b , then (ab)i 6= e as bi < n. Hence

∣∣ ab ∣∣ = n
b for any divisor b of n. In particular, for

d = gcd(n, k),
∣∣ ad ∣∣ = n

d . Altogether, along with Corollary 4.1.4 we get∣∣∣ ak ∣∣∣ =
∣∣∣ 〈ak〉 ∣∣∣ =

∣∣∣ 〈ad〉 ∣∣∣ =
∣∣∣ ad ∣∣∣ =

n

d
=

n

gcd(n, k)
.

�

The advantage of Theorem 4.1.6 is that we can consider a more convenient generator of a
given cyclic subgroup.

Example 4.1.7. Consider the group Z24. Then 〈21〉 = 〈gcd(21, 24)〉 = 〈3〉 which is the group
given by {3, 6, 9, 12, 15, 18, 21, 0}. Similarly, in Z27, 〈25〉 = 〈gcd(25, 27)〉 = 〈1〉 = Z27.

As a consequence of Theorem 4.1.6 we get the following corollary which gives that the order
of any element of a cyclic group divides the order of the group.
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Corollary 4.1.8. In a finite cyclic group, the order of an element divides the order of the
group.

Proof. Let G = 〈a〉 and ak ∈ G for some k ∈ Z, and let |G | = | a | = n. By Theorem 4.1.6,∣∣ ak ∣∣ = n
gcd(n,k) , so the order of ak divides the order of G.

�

Corollary 4.1.9. Let G be a group and a ∈ G with | a | = n. Then 〈ai〉 = 〈aj〉 if and only if
gcd(n, i) = gcd(n, j), and

∣∣ ai ∣∣ =
∣∣ aj ∣∣ if and only if gcd(n, i) = gcd(n, j), for i, j ∈ Z.

Proof. Suppose gcd(n, i) = gcd(n, j). Then by Theorem 4.1.6 〈ai〉 = 〈agcd(n,i)〉 = 〈agcd(n,j)〉 =
〈aj〉. Conversely, suppose 〈ai〉 = 〈aj〉, then

∣∣ ai ∣∣ =
∣∣ aj ∣∣, which implies by the second part of

Theorem 4.1.6 that n
gcd(n,i) = n

gcd(n,j) so that gcd(n, i) = gcd(n, j).

The second part of the corollary follows by using
∣∣ ai ∣∣ = n

gcd(n,i) . �

Corollary 4.1.10. Let | a | = n. Then 〈a〉 = 〈aj〉 if and only if gcd(n, j) = 1 and | a | =
∣∣ aj ∣∣

if and only if gcd(n, j) = 1.

Proof. Simply substitute i = 1 in Corollary 4.1.9. �

The above corollary allows us to identify all the generators of a cyclic subgroup once we
have found one. We observed in the examples that Zn always has 1 as a generator, but has
other generators too. The following corollary lists out these generators explicitly.

Corollary 4.1.11. An integer j in Zn is a generator of Zn if and only if gcd(n, j) = 1.

Proof. 1 is a generator of Zn, so Zn = 〈1〉. By Corollary 4.1.10, 〈j〉 = 〈1〉 = Zn if and only if
gcd(n, j) = 1.

�

Example 4.1.12. We return to our favourite example U(10) = {1, 3, 7, 9} with order 4. We
know that 〈3〉 = U(10). By Corollary 4.1.10, 〈3j mod 10〉 = 〈3〉 if and only if gcd(4, j) = 1,
so j is either 1 or 3, giving us that 3 = 31 mod 10 and 7 = 33 mod 10 are the generators of
U(10).

4.2. Classification of subgroups of cyclic groups.

Theorem 4.2.1. Every subgroup of a cyclic group is cyclic. Moreover, if | 〈a〉 | = n, then the
order of any subgroup of 〈a〉 is a divisor of n. For each positive divisor k of n, the group 〈a〉
has exactly one subgroup of order k, namely 〈a

n
k 〉.

Proof. Let G = 〈a〉 and H ≤ G. If H = {e}, it is of course cyclic with generator e. Suppose
H is a proper non-trivial subgroup. We first show that there exists t ∈ N such that at ∈ H.
Indeed, we must have at ∈ H for some t ∈ Z \ {0}, so a−t is also in H as H is a subgroup,
and one of t and −t is in N. Now let m be the smallest positive integer such that am ∈ H.
We will prove that am generates H, that is, H = 〈am〉.

Suppose ak ∈ H for some k ∈ Z. We will show that k must be a multiple of m. By
the division algorithm, there exists q, r ∈ Z with 0 ≤ r < m such that k = qm + r. Hence
ak = aqmar, so that ar = ak(am)−q ∈ H as both ak and am are in H. But due to the way we
have chosen m, this means that r = 0, so that indeed k is a multiple of m and consequently
ak ∈ 〈am〉 and H = 〈am〉, a cyclic subgroup.

Suppose now that G has finite order and |G | = | a | = n. The order of H is given by
| 〈am〉 | = | am | = n

gcd(n,m) , so the order of H divides n. We also note that an = e ∈ H = 〈am〉,
and so m divides n.
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Finally, let k be any positive divisor of n. Then 〈a
n
k 〉 has order given by n

gcd(n,n
k
) = n

n
k

= k.

On the other hand, we will show that any subgroup of order k of 〈a〉 must be equal to 〈a
n
k 〉.By

the first part of the theorem, the subgroup must be of the form 〈am〉 for some m ∈ N where

m|n. As m = gcd(m,n), k = | 〈am〉 | = n
gcd(m,n) = n

m . Hence m = n
k and H = 〈a

n
k 〉. �

We get the following corollary for the cyclic group Zn.

Corollary 4.2.2. For each n ∈ N and positive divisor k of n, the cyclic subgroup 〈nk 〉 is the
unique subgroup of Zn of order k. Moreover, these are the only subgroups of Zn.

Example 4.2.3. The group Z10 has subgroups of order 1, 2, 5 and 10. These are 〈0〉 = {0},
〈5〉 = {0, 5}, 〈2〉 = {0, 2, 4, 6, 8} and 〈1〉 = Z10 respectively.

We now see how to enumerate the number of elements of a given order in a finite cyclic
group, and in any finite group. For this we first define the Euler ϕ function.

Definition 4.2.4 (Euler ϕ function). Define a function ϕ : N→ N as follows:

ϕ(1) = 1; ϕ(n) = number of positive integers less than n and relatively prime to n for n ≥ 2.

ϕ is called the Euler ϕ function or the totient function.

We note straightaway from the definition of ϕ that the cardinality of U(n) is equal to ϕ(n)
for each integer n ≥ 2. We show now that ϕ(d) gives the number of elements of order d in a
cyclic group whose order is a multiple of d.

Theorem 4.2.5. If d is a positive divisor of n, then the number of elements of order d in a
cyclic group of order n is ϕ(d).

Proof. Let G = 〈b〉 with |G | = | b | = n, and H be the unique subgroup of order d given by

〈b
n
d 〉. For the sake of simplicity, let us write b

n
d as a and note that | a | = d. By Corollary 4.1.9,

any element of order d also generates 〈a〉. Then by Corollary 4.1.10, an element ak generates
the subgroup 〈a〉 of order d if and only if gcd(k, d) = 1. Hence the number of elements of
order d in G is equal to ϕ(d).

�

Note in the above theorem that the number of elements of order d in a cyclic group whose
order is any multiple n of d depends only on d, and not on n.

Corollary 4.2.6. In a finite group, the number of elements of order d is a multiple of ϕ(d).

Proof. If G has no elements of order d, the statement is true as ϕ(d) divides 0. Suppose there
exists a ∈ G with | a | = d. Then 〈a〉 has ϕ(d) elements of order d by Theorem 4.2.5. Suppose
there exists b ∈ G of order d such that b /∈ 〈a〉. Then 〈b〉 has ϕ(d) elements of order d. If there
exists some c of order d such that c ∈ 〈a〉 ∩ 〈b〉, then 〈a〉 = 〈c〉 = 〈b〉, contradicting the fact
that b /∈ 〈a〉. We continue enumerating in this way for each element of order d in G which
is not contained in the previously enumerated cyclic subgroups. As G is finite, this process
comes to an end to give us that there exists a multiple of ϕ(d) elements of order d. �

The Euler ϕ function is easily computed for powers of prime numbers, and for products of
relatively prime integers.

Theorem 4.2.7.

(i) For a prime p and n ∈ N, ϕ(pn) = pn − pn−1.
(ii) Suppose m,n ∈ N and gcd(m,n) = 1. Then ϕ(mn) = ϕ(m)ϕ(n).
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Proof.

(i) We want to enumerate the number of positive integers less than or equal to pn that
are relatively prime to pn. There are pn positive integers less than or equal to pn.
Let m be a positive integer less than or equal to pn. To have gcd(p,m) > 1, p
must be a divisor of m, so m can be one of p, 2p, . . . , pn−1p. There are pn−1 such
possibilities. Hence gcd(pn,m) = 1 for pn − pn−1 positive integers m less than pn,
hence ϕ(pn) = pn − pn−1.

(ii) We want to enumerate the number of positive integers less than mn that are relatively
prime to mn. We list the integers between 1 and mn out as follows:

1 m + 1 2m + 1 . . . (n− 1)m + 1
2 m + 2 2m + 2 . . . (n− 1)m + 2
...

...
...

...
...

m m + m 2m + m . . . (n− 1)m + m = mn.

For each r ∈ {1, . . . ,m}, the r-th row contains the elements km + r, for k ∈
{0, . . . , n − 1}. Now, clearly gcd(km + r,m) = gcd(r,m), so that all entries of the
r-th row are relatively prime to m if and only if gcd(r,m) = 1. If an integer r is
not relatively prime to m, it is not relatively prime to mn, hence to compute ϕ(mn)
we can ignore all rows numbered by r where gcd(r,m) > 1. Hence we only consider
ϕ(m) rows.

Now, within each of these ϕ(m) rows, we only need those elements that are rela-
tively prime to mn. As gcd(m,n) = 1, the set {[0(m)+r], [1(m)+r], . . . , [(n−1)m+r]}
consists of all the possible congruence classes under congruence mod n, for each r
that is relatively prime to m. Out of these, we only need to consider those integers
that are relatively prime to n, so there are ϕ(n) such integers. By being in this row,
they are also relatively prime to m, hence they are relatively prime to mn.

Thus in total, there are ϕ(m) rows with ϕ(n) elements each that are relatively
prime to mn. Hence ϕ(mn) = ϕ(m)ϕ(n).

�
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