
PMATH 336: INTRODUCTION TO GROUP THEORY WITH

APPLICATIONS

NOTES FOR WEEK 12

INSTRUCTOR: ARUNDHATHI KRISHNAN

13. Sylow Theorems

13.1. Conjugacy classes.

Definition 13.1.1. Let G be a group and a, b ∈ G. We say that a and b are conjugate in G
if xax−1 = b for some x ∈ G. The conjugacy class of a is the set conj(a) = {xax−1 | x ∈ G}.

It is not hard to prove that conjugacy is an equivalence relation and thus the distinct
conjugacy classes of elements of G form a partition of G.

Example 13.1.2. Let G = D4. Then we get the following conjugacy classes: conj(r0) = {r0},
conj(r1) = {r1, r3} = conj(r3), conj(r2) = {r2}, conj(s0) = {s0, s2} = conj(s2) and conj(s1) =
{s1, s3} = conj(s3).

Theorem 13.1.3. Let G be a finite group, a ∈ G and C(a) = {x ∈ G | xa = ax} be the
centralizer of a. Then | conj(a) | = |G : C(a) |.

Proof. Define the map T that sends the coset xC(a) to the conjugate xax−1 of a. Now
xax−1 = yay−1 if and only if x−1ya = ax−1y if and only if x−1y ∈ C(a), which in turn is true
if and only if the cosets xC(a) and yC(a) are equal. Hence T is well-defined and one-to-one. It
is clearly onto the conjugacy class of a. Hence the number of cosets of C(a) in G given by the
index |G : C(a) | is equal to the number of conjugates of a, so that | conj(a) | = |G : C(a) |. �

Recall that we showed in Assignment 1 that |G | = | conj(a | |C(a) | for each a ∈ G. This

follows from Theorem 13.1.3 and the fact that for the finite group G, |G : C(a) | = |G |
|C(a) | .

We get the following corollary immediately.

Corollary 13.1.4. If G is a finite group, then | conj(a) | divides |G |.

Further, as distinct conjugacy classes form a partition of G, we also have the following
consequence.

13.2. The class equation.

Corollary 13.2.1 (Class Equation). For any finite group G,

|G | =
∑
|G : C(a) | , (1)

where the sum runs over one element from each conjugacy class of G.

The following theorem gives that a group of prime power order has a non-trivial centre.

Theorem 13.2.2. Let G be a non-trivial finite group whose order is a power of a prime p.
Then Z(G) has more than one element.
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Proof. We observe that conj(a) = {a} if and only if gag−1 = a for each g ∈ G, which happens
precisely if a ∈ Z(G). Hence we can split the sum in (1) to get

|G | = |Z(G) |+
∑

a/∈Z(G)

|G : C(a) | .

The index |G : C(a) | = |G |
|C(a) | for each a, hence each term in

∑
a/∈Z(G) |G : C(a) | has the

form pk for k ≥ 1. Hence |G | −
∑

a/∈G |G : C(a) | = |Z(G) |, so that p divides |Z(G) | and
|Z(G) | cannot be 1.

�

This gives us a second proof of Theorem 9.4.1

Corollary 13.2.3. If |G | = p2, where p is a prime, then G is Abelian.

Proof. By 13.2.2, |Z(G) | is either p or p2. If it is the latter, then Z(G) = G, so G is Abelian.

On the other hand if it is the former, then
∣∣∣G�Z(G

∣∣∣ = p, so G�Z(G) is cyclic and hence by

Theorem 9.3.2, G is Abelian. �

13.3. The probability that two elements commute. Before moving on to the Sylow
theorems, consider this interesting problem. Given a finite group, how likely it is that two
elements commute? If the group is Abelian, of course the probability is 1! Interestingly, we
can use conjugacy classes to arrive at an answer in the general case. Namely, the larger the
number of conjugacy classes, the larger the probability that two elements commute.

To find the probability that two elements of G commute we must compute:

p =
| {(x, y) ∈ G×G | xy = yx} |

|G×G |
=
|K |
n2

,

where K = {(x, y) ∈ G×G | xy = yx} and n = |G |.
Now xy = yx if and only if y ∈ C(x). Hence |K | =

∑
x∈G |C(x) |. If z1, z2 ∈ conj(a) for

some a ∈ G, then conj(z1) = conj(z2), so that by Theorem 13.1.3, we also have |C(z1) | =
|C(z2) |. Hence

∑
z∈conj(a) |C(z) | = | conj(a) | |C(a) | = |G | = n. Let m be the number of

distinct conjugacy classes in G. Then |K | = mn, so that the probability p = m
n .

We get the maximum number of conjugacy classes if | conj(a) | = 1 for as many a ∈ G as
possible, which in turn is true if and only if a ∈ Z(G), so for a higher probability, we want
the center to be larger (this also fits in with our intuition!).

Now if G is not Abelian, then by Theorem 9.3.2, G�Z(G) is not cyclic, hence it must have

order greater than or equal to 4. Hence |Z(G) | ≤ |G |
4 . Hence if G is not Abelian, the

maximum number of elements in Z(G) is |G |4 . To get the maximum number of conjugacy

classes, the remaining 3
4 |G | elements must be in conjugacy classes of size 2. Hence the

maximum number of conjugacy classes m is equal to |G |4 + 1
2 ×

3
4 |G | = 5

8 |G | = 5
8n, and

p ≤ m
n = 5

8 . So in a non-Abelian group, the best possible probability that two elements

commute is 5
8 . This upper bound is actually achieved in the group D4 (check Example

13.1.2).

13.4. Sylow Theorems. Sylow’s theorems tell us a great deal about a group just by using
its order. The first theorem tells us that for any prime power that divides the order of a finite
group, there exists a subgroup of that order. Hence we get a partial converse of Lagrange’s
theorem.
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Theorem 13.4.1 (Sylow’s first theorem). Let G be a finite group and p be a prime. If pk

divides G for some k ∈ N, then G has at least one subgroup of order pk.

Proof. The proof is by induction on |G |. If G is trivial, then the theorem is trivially true as
no prime power divides 1. Suppose the statement is true for all groups of order less than |G |.

The Class Equation (1) for G gives |G | = |Z(G) | +
∑

a/∈Z(G) |G : C(a) |. If pk divides

|C(a) | for some a /∈ Z(G), then C(a) is a proper subgroup of G such that pk divides its order.
So by the induction hypothesis, C(a) has a subgroup of order pk, and hence, so does G. We
thus assume that for no a ∈ Z(G) does pk divides |C(a) |.

Hence we assume pk divides |G | but pk does not divide C(a) for each a /∈ Z(G) as C(a) is
a proper subgroup of G. As |G | = |G : C(a) | |C(a) | and p is a prime, we must have that p
divides |G : C(a) | for each a /∈ Z(G). This gives in turn that p divides Z(G). Now, Z(G) is
an Abelian group, hence by Cauchy’s theorem (Theorem 9.3.4), Z(G) contains an element of

order p, say x. As 〈x〉 is a normal subgroup of G, G�〈x〉 is a quotient group. Further, pk−1

divides
∣∣∣G�〈x〉 ∣∣∣, so by the induction hypothesis G�〈x〉 has a subgroup of order pk−1. It is left

as an exercise to prove that this subgroup is of the form H�〈x〉 where H is some subgroup of

G (Hint: Use Theorem 10.2.2 (vii)).

Now
∣∣∣H�〈x〉 ∣∣∣ = pk−1 and | 〈x〉 | = p, hence |H | = pk as required. �

Definition 13.4.2. Let G be of finite order and p be a prime. If pk divides |G | and pk+1

does not divide |G |, then any subgroup of order pk is called a Sylow p-subgroup of G.

Suppose |G | = 23 · 32 · 54 · 7. Then Sylow’s first theorem tells us that G has subgroups
of orders 2, 4, 8, 3, 9, 5, 25, 125, 625 and 7. Moreover, the Sylow 2-subgroup has order 8, the
Sylow 3-subgroup has order 9, the Sylow 5-subgroup has order 625 and the Sylow 7-subgroup
has order 7.

In other words, a Sylow p-subgroup of G is a subgroup whose order is the largest power of
p consistent with Lagrange’s theorem.

As every subgroup of prime order must be cyclic, we get the following corollary as a
generalization of Theorem 9.3.4 (Cauchy’s theorem).

Corollary 13.4.3. Let G be a group of finite order and suppose p is a prime that divides
|G |. Then G has an element of order p.

Definition 13.4.4. Let H and K be subgroups of a group G. We say that H and K are
conjugate in G if there exists g ∈ G such that H = gKg−1.

Recall that if H = gKg−1, then H and K have the same order.

Lemma 13.4.5. Let K be a Sylow p-subgroup of a finite group G. Recall that N(K) = {g ∈
G | gKg−1 = K} is the normalizer of K. If x ∈ N(K) and |x | is a power of p, then x ∈ K.

Proof. K is a normal subgroup of N(K) and 〈x〉 a subgroup of N(K) so that their product
〈x〉K is a subgroup of N(K). Suppose |x | = pl and |K | = pk, then by Theorem 7.2.9,

| 〈x〉K | = | 〈x〉 | |K |
| 〈x〉 ∩K |

=
plpk

| 〈x〉 ∩K |
.

Hence | 〈x〉 ∩K | ≥ pl as the subgroup 〈x〉K is a subgroup whose order is a power of p,
where the power cannot be greater than k. On the other hand | 〈x〉 ∩K | ≤ pl, so that
〈x〉 ∩K = 〈x〉 and x ∈ K. �
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Here is a lemma analogous to Theorem 13.1.3.

Lemma 13.4.6. Let K be a subgroup of a finite group G and let C = {K1, . . . ,Kn} be the
set of conjugates of K. Then |C | = |G : N(K) |.

Proof. Define the map T that sends the coset gN(K) to the subgroup gKg−1. As gN(K) =
hN(K) if and only if h−1g ∈ N(K), which in turn is true if and only if h−1gKg−1h = K, or
gKg−1 = hKh−1, the map T is well-defined and injective. It is is clearly onto C. Hence |C |
is given by the number of cosets of N(K) in G, that is |G : N(K) |. �

Sylow’s second theorem states that any subgroup of order some power of a prime p is
contained in a Sylow p-subgroup of G.

Theorem 13.4.7 (Sylow’s second theorem). If H is a subgroup of a finite group G and |H |
is a power of a prime p, then H is contained in some Sylow p-subgroup of G.

Proof. Let K be a Sylow p-subgroup of G and let C = {K1, . . . ,Kn} with K = K1 be the set
of all conjugates of K in G. That is, K1 = eKe−1 and there exist g2, . . . , gn ∈ G such that
Ki = giKg−1i . Each Ki is a Sylow p-subgroup of G.

Now ϕ : G × C → C be given by ϕ(g,Ki) = gKig
−1 defines a group action and for

ϕg(Ki) := ϕ(g,Ki), the map g 7→ ϕg is a group homomorphism. By restricting the map
g 7→ ϕG to H and applying the Orbit-Stabilizer theorem (Theorem 12.2.3) we have that∣∣ orbϕ

H(Ki)
∣∣ divides |H | and hence it is a power of p.

Now observe that
∣∣ orbϕ

H(Ki)
∣∣ = 1 if and only if gKig

−1 = K for all g ∈ H, that is, if and
only if H ≤ N(Ki). But as every element of H has order equal to some power of p, by Lemma
13.4.5,

∣∣ orbϕ
H(Ki)

∣∣ = 1 if and only if H ≤ Ki. Hence the theorem is proved if we prove that

for some i,
∣∣ orbϕ

H(Ki)
∣∣ = 1.

By Lemma 13.4.6, |C | = |G : N(K) |. As |G : K | = |G : N(K) | |N(K) : K | and |G : K |
is not divisible by p, neither is |G : N(K) | = |C |. On the other hand, |C | is equal to a sum
of powers of p as the orbits partition C, hence at least one orbit must have size p0 = 1, as
required. �

Sylow’s third theorem places some conditions on the number of Sylow p-subgroups of a
group G.

Theorem 13.4.8 (Sylow’s third theorem). Let p be a prime and G be a finite group with
|G | = pkm, where p does not divide m. Then with n denoting the number of Sylow p-subgroups
of G, we have n ≡ 1 mod p, and n divides m. Further, any two Sylow p-subgroups of G are
conjugate.

Proof. Let K be any Sylow p-subgroup of G and as before, let C = {K1, . . . ,Kn} be the set
of conjugates of K with K = K1. We will prove that n mod p ≡ 1.

Recall the group action ϕ from Theorem 13.4.7 and the homomorphism g 7→ ϕg. That
is, ϕg(Ki) = ϕ(g,Ki) = gKig

−1 for each g ∈ G and i. By the Orbit-Stabilizer theorem,∣∣ orbϕ
K(Ki)

∣∣ divides |K |, so that it is a power of p for each i. Further, as observed in Theorem

13.4.7,
∣∣ orbϕ

K(Ki)
∣∣ = 1 if and only if K ≤ Ki. Thus

∣∣ orbϕ
K(K1)

∣∣ = 1 and
∣∣ orbϕ

K(Ki)
∣∣ is a

power pli for li ≥ 1 for each i 6= 1. Since the orbits partition C, we get n = |C | ≡ 1 mod p.
Next we show that every Sylow p-subgroup of G is in C. Suppose H is a Sylow p-subgroup

of G that is not in C. Consider the group action ϕ restricted to H × C. Then we know that
|C | is given by the sum of cardinalities of distinct orbits orbϕ

H(Ki) under the action of ϕ.
No orbit has size 1 as H does not belong to C. Thus |C | is a sum of terms divisible by p
so n ≡ 0 mod p. But this contradicts the fact that n ≡ 1 mod p. Hence it must hold that
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H ∈ C, and indeed that every Sylow p-subgroup is a conjugate of K, the Sylow p-subgroup
with which we started.

Finally, n = |C | = |G : N(K) | = |G |
|N(K) | = pkm

|N(K) | , so n divides pkm. But as gcd(n, p) = 1

(since n ≡ 1 mod p), we must have that n divides m. �

Henceforth, we will denote the number of Sylow p-subgroups of a finite group G by np.

Corollary 13.4.9. A Sylow p-subgroup of a finite group G is a normal subgroup if and only
if it is the only Sylow p-subgroup of G.

We will now apply the Sylow theorems to some familiar groups.

Example 13.4.10.

(i) Let G = S3. Then |G | = 3 × 2. Hence there exists a Sylow 2-subgroup. Further,
n2 divides 3 and n2 ≡ 1 mod 2. In fact, n2 is equal to 3 as K1 = {(1), (1, 2)},K2 =
{(1), (2, 3)} and {(1), (1, 3)} are all subgroups of order 2. It is not hard to verify that
K2 = (1, 2)K1(1, 2)−1 and K3 = (2, 3)K1(2, 3)−1.

(ii) Let G = A4. Then |G | = 12 = 3 × 22, so G has a Sylow 3-subgroup which is a
subgroup of order 3. We must have that n3 divides 4 and n3 ≡ 1 mod 3, so n3 = 1
or n3 = 4. In fact n4 = 4 (verify!).

13.5. Applications of Sylow’s theorems. We will use the Sylow theorems to say various
things about groups given their orders.

Example 13.5.1. Suppose |G | = 40 = 23 × 5. Then the number of Sylow 5-subgroups n5

divides 8 and n5 ≡ 1 mod 5, so n5 = 1. That is, there is only one subgroup of order 5 and by
Corollary 13.4.9, it must be normal. The number of Sylow 2-subgroups (of order 8) n2 must
divide 5 and n2 ≡ 1 mod 2, so that n2 can be 1 or 5. If n2 = 1, the Sylow 2-subgroup must
be normal. Otherwise, if n2 = 5, the subgroup is not normal. Let H5 be a subgroup of order
5 and H2 a subgroup of order 8. Then H5H2 is a subgroup, has order 40 and hence must be
equal to G. If H2 is also normal, then G = H5 ×H2.

Example 13.5.2. Let |G | = 30 = 2×3×5. Then n5 divides 6 and n5 ≡ 1 mod 5, so n5 = 1
or 6; n3 divides 10 and n3 ≡ 1 mod 3 so that n3 = 1 or 10. We cannot have both 6 subgroups
of order 5 and 10 subgroups of order 3 as |G | = 30. Hence one of the subgroups of order 3
or 5 (or both) is unique and hence normal in G. The product of the 3-Sylow subgroup, say
H3 and the 5-Sylow subgroup H5 is a group H3H5 of order 15. We claim that H3H5 is cyclic
and normal.

To see that it is cyclic, we apply Sylow’s third theorem to the group H3H5. In particular,
the number n′3 of 3-Sylow subgroups in H3H5 divides 5 and is congruent to 1 mod 3, forcing
n′3 = 1. Similarly, n′5 divides 3 and n′5 ≡ 1 mod 5, so n′5 = 1. Hence there exists an element
of H3H5 of order 15 so that H3H5 is cyclic.

Next, we see that |G : H3H5 | = 30
15 = 2, so H3H5 is normal. Now, H3H5 = 〈a〉 for some

element a of order 15. The subgroup H5 is also cyclic and H5 = 〈ak〉 for some k ∈ N. Let
x ∈ G. Then x(ak)mx−1 = (xamx−1)k = (ar)k for some r as am ∈ H3H5 which is normal.
Now (ar)k = (ak)r ∈ H5, so H5 is indeed normal. Similarly, it can be shown that H3 is also
normal.

Finally, let x be an element of order 2. Then G = {xiaj | 0 ≤ i ≤ 1, 0 ≤ j ≤ 14}, where a
is an element of order 15 as above.
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Example 13.5.3. Suppose |G | = 72 = 23×32. We will show that G has a proper non-trivial
normal subgroup. Now n3 divides 8 and n3 ≡ 1 mod 3, so n3 = 1 or 4. If n3 = 1, then the
Sylow 3-subgroup H3 is normal. Otherwise let H3 and H ′3 be two distinct Sylow 3-subgroups.

Then |H3H
′
3 | =

|H3 ||H′
3 |

|H3∩H′
3 |

= 81

|H3∩H′
3 |

. Since |H3 ∩H ′3 | divides 9 and H3 6= H ′3, we must have

|H3 ∩H ′3 | = 3 (think about why it cannot be 1!). Hence |H3H
′
3 | = 81

3 = 27.

Now as |H3 | , |H ′3 | = 9 = 32, they are Abelian (Theorem 9.4.1). Hence H3 and H ′3 are
contained in N(H3 ∩H ′3) so that |N(H3 ∩H ′3) | divides 72, is divisible by 9 and has at least
|H3H

′
3 | = 27 elements. Hence |N(H3 ∩H ′3) | is either 36 or 72. If it is the former, then

|G : N(H3 ∩H ′3) | = 2, so the normalizer is normal. In the latter case, N(H3 ∩H ′3) = G, so
that H3 ∩H ′3 is normal in G.

The following theorem is useful in classifying groups of order pq where p and q are primes
satisfying certain conditions.

Theorem 13.5.4. If |G | = pq, where p and q are primes, p < q and p does not divide q− 1,
then G is cyclic. Hence G ∼= Zpq.

Proof. Let Hp be a Sylow p-subgroup of G and Hq be a Sylow q-subgroup of G. Now np =
1 + kp for some k ∈ Z and np divides q, so that np = 1 or q. But np is not q as p does not
divide q − 1. Hence np = 1.

Similarly, nq divides p so it is 1 or p. On the other hand, nq = 1 + lq for some l ∈ Z. If
nq = p, then q divides p− 1, a contradiction as p < q. Hence np = 1 = nq, so that Hp and Hq

are normal.
Let Hp = 〈x〉 and Hq = 〈y〉. We claim that xy = yx. Indeed, xyx−1y−1 = (xyx−1)y−1 ∈

Hqy
−1 = Hq and similarly xyx−1y−1 ∈ Hp. This implies that xyx−1y−1 ∈ Hp ∩Hq = {e}, so

that xy = yx. Hence |xy | = pq and G is cyclic. �

Let’s consider some implications of the above theorem. In fact, we use a great deal of
knowledge built up so far about finite groups.

Example 13.5.5. Let |G | = 99 = 32 × 11. Then n11 divides 9 and n11 ≡ 1 mod 11, so
n11 = 1 and the Sylow 11-subgroup H11 is normal. Similarly, the Sylow p-subgroup H3 is
normal. Now H11 is of order 11 and hence cyclic and Abelian (that is, H11

∼= Z11). The
subgroup H3 is of order 9 and hence Abelian; thus it is either isomorphic to Z9 or Z3 ⊕ Z3.

Elements from H3 and H11 commute with each other (verify this- the proof is similar to
that in Theorem 13.5.4). As H3 ∩ H11 = {e}, we get that G = H × K, so that G is also
Abelian. Hence G ∼= Z99 or G ∼= Z33 ⊕ Z3.

Example 13.5.6. Let |G | = 66 = 2 × 3 × 11. Then as n11 divides 6 and n11 ≡ 1 mod 11,
we get n11 = 1 and H11 is normal in G. n3 divides 22 and n3 ≡ 1 mod 3 implies that n3 = 1
or 22.

Now |H3H11 | = 3×11
|H3∩H11 | = 33. As H11 is normal, H3H11 is a subgroup of order 33. As 3

does not divide 11− 1 = 10, we can use Theorem 13.5.4 to get that H3H11 is cyclic, say 〈x〉.
Now, let y ∈ G be any element of order 2 which is sure to exist by Cauchy’s theorem. As
〈x〉 is normal (as it has index 2), yxy−1 = xi for some i ∈ {1, . . . , 32}. We will now identify
the possible values for i. It is not hard to see that as xi = yxy−1,

∣∣xi ∣∣ = |x | = 33, hence
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gcd(i, 33) = 1. Also,

x = y−1(yxy−1)y

= y−1xiy

= yxiy−1

= (yxy−1)i

= (xi)i

= xi
2
.

Hence 33 divides i2 − 1 and so 11 divides i± 1, so that i = 0± 1, 11± 1, 22± 1 or 33± 1.
Consolidating all the conditions on i, we get i = 1, 10, 23 or 32, so that there are at most 4
groups of order 66.

Finally, we can check that there are exactly 4 as the following are all non-isomorphic groups
of order 66:
Z66

D33

D11 ⊕ Z3

D3 ⊕ Z11.

Example 13.5.7. Let |G | = 255 = 3× 5× 17. Then n17 divides 15 and n17 ≡ 1 mod 17 so
that n17 = 1. Hence H17 is normal, so N(H17) = G.

Now
∣∣∣N(H17)�C(H)17

∣∣∣ divides |Aut(H17) | = |U(17) | = 16 by Example 10.3.3. (iii).

Hence
∣∣∣G�C(H17)

∣∣∣ divides 16 and 255 so must be equal to 1. This implies that C(H17) = G

so that H17 ⊆ Z(G). Hence 17 divides |Z(G) | and |Z(G) | divides 255, so |Z(G) | = 17, 51, 85

or 255. This gives that
∣∣∣G�Z(G)

∣∣∣ = 15, 5, 3 or 1. In all cases, G�Z(G) is cyclic, so G is Abelian

and hence isomorphic to Z255.

References

[1] Chapter 24. Gallian, Joseph. Contemporary abstract algebra. Nelson Education, 2012.


	13. Sylow Theorems
	13.1. Conjugacy classes
	13.2. The class equation
	13.3. The probability that two elements commute
	13.4. Sylow Theorems
	13.5. Applications of Sylow's theorems

	References

