NOTES ON MEASURE THEORY

ABSTRACT. Notes on the Measure Theory course taken at II'TM by Prof. S.
Kesavan

1. RIEMANN INTEGRATION

Let [a,b] be a closed interval in R. Let R be the class of Riemann integrable
functions on [a, b].

Consider a partition of the interval P = {a = x1,z9, - ,z, = b}. Let t; €
[2i—1,2;) and S(P, f) = >, f(t;)Az;. Let u(P) = max Ax;.
1ELL, " N
We say that (IIiDr)n OS(P, f) = Aif Ve > 0,36 > 0 such that VP such that
w(P)—

u(P) < 4, and for all choices of t; € [z;—1,2;],1 <i<n,|S(P,f)— Al <e.

Theorem 1.1. (1) If Jim S(P.f) = A, then f € R and [P fdz = A.
w(P)—

(2) If f is continuous, then f € R.
(3) If f € R, then (P,f)= [ fdu.

lim S
n(P)—0

Proof. (1) Let € > 0. Then 3§ > 0 such that
uw(P)<d = A—%<S(P,f)<A+%.

Choose such a partition. Letting ¢; vary, moving towards the points of
infimum and supremum, we get

A= <SLP)SUPH <A+

Also, L(P,f) < [Y fde <U(P,f) = [ fdz = A.

(2) If f is continuous on [a, b], then f is uniformaly continuous on [a, b]. Hence
for € > 0,36 > 0 such that |z —y| < = |f(z) — f(y)| < e. Hence, if
u(P) < §, then M; —m; <e.

= U(P,f) — L(P, f) < e(b—a).

(3) Let e >0 and M = sup |f(x)]. f € R = 3P« such that U(Px, f) <
z€Ja,b]

fab fdx + . Assume that Px has n subintervals and choose §; < 37,

Choose P such that u(P) < §;. Now U(P, f) can be written as two sums,

one that depends on the contributions of subintervals containing nodes of

Px and those that do not contain nodes of Px. The first sum is less than

MZS\Z:), while the second sum is less that U(Px, f). Hence U(P, f) <

5+ f:fdx. Similarly, find 62 > 0 such that u(P) < 6o = L(P, f) >
1
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[Pfde — & Let § = min (6,,8,). = [ fdr—$<L<S<UC
JYpde+ .

O

Example 1.2. Let ry,73, - ,7,, - be an enumeration of the rationals in [a, b].

Let
17 T =21, " ,Tn,
fn(z) :{

0, otherwise.

Then for a partition P with n subintervals, L(P, f) = 0 and U(P, f) < nu(P).
Taking u(P) as small as required, we get that f,, € R and f; fndx =0.

Example 1.3. Let
, x is rational,

f@) = {0, otherwise.

Then for every partition P, L(P, f) = 0 and U(P,f) =b—a # 0. Hence f ¢ R.
We observe that the f,, of the previous example converge pointwise to f.

This is why the need for a different kind fo integration arises. Consider a
step function f = Y1, a;xs,, where I; are intervals. Then we define fab f=

Z?:l Oéil([i).

We note that the integral is also equal to

Z a;( total length of intervals where f = o).
i=1

Next, we ask whether the intervals I; can be replaced by arbitrary sets F;. How
do we talk about the ‘length’ of an arbitrary set? Hence, the need for measures
arises.

2. MEASURES

Let X be a non-empty set and P(X) denote the power set of X.

Definition 2.1. A ring R is a subset of P(X) which is closed under unions and
differences. That is,

E,FER = FEUF,E\FeR.
Remark 2.2. Let R be a ring. Then

(1) D eR.

(2) EEFER = ENF=FE\(E\F)eR.

(3) EAF=(E\F)U(F\E)eR.
Hence a ring contains the empty set, is closed under intersections and sym-
metric differences. It is also clear that a ring is closed under finite unions
and intersections.

(4) If R is closed under unions and finite differences, then it is a ring since
E\F=(EUF)AF.

(5) If R is closed under intersections and finite differences, then it is a ring
since EUF = (EAF)A(ENF).



NOTES ON MEASURE THEORY 3

Example 2.3. (1) P(X) is trivially a ring.
(2) R = {0} is a ring.
(3) Let X =Z and R = {A C Z: A is finite or ¢}.
(4) Let X =R and P = {[a,b) : a,b € R,a < b} and R = set of finite unions
of elements of P.

Definition 2.4. A ring R is said to be an algebra if X € R.

Hence an algebra is closed under unions and complementations. Conversely, if
R is closed under unions and complementations, it is an algebra, since

X=EUE‘E\F=ENF®=(E°UF°)".

Let £ C P(X). Then P(X) is a ring containing £. The intersection of rings is
again a ring. Hence, the intersection of all rings containing £ is the smallest ring
containing £ and is called the ring generated by £. We denote it by R(E)

Let R’ = {all subsets which covered by a finite number of members of £}. Then
ECR and Ey,Ey € R = FE1UFEs, F1\ Fy € R'. Hence R’ is a ring containing
E. Hence, R(£) C R’'. This shows that every member of the ring generated by &
can be covered by finitely many members of £.

Definition 2.5. A o-ring S is a collection of subsets of X which is closed under
differences and countable unions. That is,

(1) EEFeS = E\FeS.
(2) {Bi}2, €S = UX,E; €8.
Let £ =U E;. Then N2, = E\ (U2, (E\ E;)) €8.

As before, for £ C P(X), one can talk of the o-ring generated by £ and denote
it by S(E).

Definition 2.6. § is called a o-algebra if it si a o-ring such that X € S.

The above definition can be shown to be equivalent to S being closed under
countable unions and complementations.

Let (X,7) be a topological space. Then S(7), the o-ring generated by 7 is
actually a o-algebra and is called the Borel o-algebra generated by (X, 7).

Let X be a non-empty set and R a ring on X.

Definition 2.7. A measure p on R is an extended real-valued function such that:

(1) pW(F) 20VE eR

(2) ul0) =0

(3) w satisfies countable additivity, that is, if {E;}5°, is a collection of mutually
disjoint sets in R and if E = U2, E; € R, then p(E) = >°2, u(E;).

Here, we need not worry about convergence of the series as p is an extended
real valued function, and rearrangements do not affect the summation since each
term is positive.
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Remark 2.8. If we assume that there exists at least one E € R such that u(E) <
00, then (2) follows from (1) and (3), for

E=EUpupu---

and hence
w(E) = p(E) + p(®) + p(@) + -
giving (@) = 0 since p(E) is finite.

Example 2.9. (1) Let X # () and R = P(X). For E C X, define

number of elements in £, if E is finite,
W(E) =

0, otherwise.
(2) Dirac measure: X # (), R = P(X). Fix 29 € X. Let
1, ifxo€E,
Oz (E) = .
0, otherwise.

(3) X # 0, R=the ring of finite subsets of X. Let f : X — R be a non-negative
function. Let E = {x1, 22, -+ ,x,}. Define u(E) =31 | f(xn).

Let X be a non-empty set, R a ring and p a measure on R.
Proposition 2.10. (1) p is monotone, i.e.,
ECF,E,FeR = pu(E) < pu(F).
(2) w is subtractive, i.e.,

WEF\E)=uF)—ulE) VECF,E,FeR, uF) < oco.

Proof. (1) f EC F, then F = EU(F\ E). Hence u(F) = u(E) + pu(F \ E).
Hene p(E) < p(F).
(2) Further, if u(E) < oo, then u(F\ E) = u(F) — u(E).

Proposition 2.11. Let E, E; € R,U2 | E; C E and E; disjoint. Then

w(E) > Z w(Es).
i—1

Proof. ¥n,U!_E; C E. Hence u(E) > p(U, E;) = 31", pu(E;) Vn. Hence p(E) >
Dics 1(E). O

Proposition 2.12 (Continuity from below). Let E; € R,{E;} be an increasing
sequence. Let E =UXE; € R. Then u(E) = lim u(E;).
11— 00

Proof. p(UZy) = p(UZ,(Ei \ Eio1)) = 3255, w(Bi \ Biy) = lim 370, p(E; \

Ei1) = lim (Ui, (B \ Ei1)) = lim p(Ey). 0

Proposition 2.13. Let {E;} be a decreasing sequence in R, E = N2 E; € R.
Suppose Im € N such that p(Fy,) < co. Then u(E) = lim w(Ey).
n—oo
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Proof.
wEy,) <oo = p(E,) <ocoVn >m.
p(Em) = (E) = p(Em) = (Nnz2mEn) = p(Em \ NnzmEn)
— 1(Unz (B \ Ea)) = lim (B \ E)
= lim (u(Em) — @(En)) = p(Em) — Tim u(Ey)
Hence u(FE) = nlgr;oy(En) O

Example 2.14. Let X = N, R = P(N) and p be the counting measure. Let
E,={n,n+1,---}. Then u(E,) = cc¥n, N2, (E,) = 0 and (@) = 0. Hence the
condition that p(E,,) < oo for some m € N cannot be removed.

Definition 2.15. Let X # ), R be a ring and u a measure. H(R) is defined as
the smallest hereditary o-ring containing R. That is, H(R) is a o-ring containing
R, and it £ € H(R),F C E, then F € H(R).

Let £ be any collection of sets and S(€) be the smallest o-ring containing €. Let
fe8(€). Then IH{E;}2, in & such that FF C U2, E;. Let H(R) be the collection
of all sets which can be covered by a countable number of elements of R. Then
H(R) is hereditary.

Definition 2.16 (Outer measure). An outer measure yu* on H is an extended real
valued function p* : H — R U {oo} such that

“(E) > OVE €H.
0

W
u()

wr 1smonotone ie, ECF E,Fet = p*(E) < p*(F).
W

* is countably addltlve ie. if B = UXE;,E E; € H, then p*(E) <
Zz1 w(E;).

Proposition 2.17. Let X # 0, R be a ring and i a measure. Let E € H. Then
we know that H{ E;}, E; € R such that E C U2, E;. Define

= inf {Zu )E CUXE;, E;, € R}

Then p* is an outer measure on H(R) which extends u, i.e. if E € R, then
u(E) = ().

Proof. Let E € R. Now, E C E, hence p*(E) < u(E). Let E C U2, E;. Then
w(E) < 3272, w(E;). Thisis true for every cover { E; } of E and hence u(E) < p*(E).
In particular, u*(@) = 0. Clearly, u* > 0.

Let E C F. Then every cover of F is also a cover of E. Hence p*(E) < p*(F).

Let E,E; € H(R),E = U2, E;. Assume Ji such that p*(E;) = oo. Then
S W (E;) = oo > p*(E). So assume that p*(E;) < coVi. Let e > 0. Then
I Eij}52, in R such that E; C U, Eij and Y72, pu(Eij) < p*(E;) + 5. This is
true since p(E;) < oo. Hence

ECuUz, U, Eij

oo

:>M*(E)SZ E;; SZZH z]

1,9=1 =1 j=1
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<Y wH(E) +e
i=1
Hence p*(E) < Y00, p*(E;).

O

Example 2.18. Let X = N, R be the set of all finite subsets inN and p be the
counting measure. Then H(R) = P(N). pu*(E) = oo if E is infinite. So the outer
measure may be infinite even though the measure is finite.

Definition 2.19. A measure p (or an outer measure p*) is called finite if u(E) <
oo (p*(e) < x),VE € R.

A measure p (or an outer measure p*) is called o-finite if VE € R, H{E;} C R
such that E C U2, E; and p(E;) < oo Vi (respectively pu*(E;) < oo Vi).
Proposition 2.20. If u is o-finite on R, then u* is also sigma-finite on H(R).

Proof. Let E € H(R). 3E; € R such that E C U2, E;. Since p is o-finite,
E; C U B, with E;; € R and p(Ejj) < oo. Hence B C U2, U2, Ej; and
w* (Eij) = p(Eij) < . -
Definition 2.21. Let H be any hereditary o-ring and p* be an outer measure on
H. A set E is said to be p*-measurable if VA € H, we have

p(A) = p (AN E) + p(ANE°).

We want to obtain a measure from the outer measure p*, hence we need to build
our way towards countable additivity.

Let S be the collection of all y*-measurable sets in H.

*

Proposition 2.22. Let H be a hereditary o-ring, p* an outer measure on H and
S the collection of u*-measurable sets in H. Then S is a ring.

Proof. Let E,F € S§. We must show the following:

(1) EUFeS
(2) E\FeS.

Let A € H be arbitrary.
EecS = p*(A)=p*(ANE)+ p*(ANE°).
FeS = p(ANE)=p (ANENF)+p* (ANENF°)
and
pANE)=p (ANE‘NFE)+u (AN E°NF°)
So
(A =p (ANENFE)+ " (ANENFO) 4+ p* (ANENF)+p* (ANE°NFC). (1)
Replacing A by AN (AN (EUF)), we get:
prAN(EUER) =" (AN(FEUF)NENFE)+u* (AN(EUF)NENF°)
+p (AN(BEUF)NENF)+u" ((AN(EUF)NE°NF°).
This reduces to:
PAN(EUF)=p (ANENF)+p (ANENF)+pu* (ANE‘NF). (2
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Hence (1) becomes:
W*(A) = (AN (BUF)) + g (AN (B U FY°)
So EUF €S.

Next, we replace A in (1) by AN(E\F)*=AN(ENF°)°*=AN(E°UF) to get
WANENE)) = (ANENF)+ " (ANE‘NF)+ p (ANE‘NF°).
Substituting in (1), we get
W*(A) = (AN (B F)*) + (AN (B \ F).
So E'\ F' € § and hence S is a ring.

O

Proposition 2.23. S is a o-ring. Further, if {E;}5°, is a disjoint sequence and
E =U2 | E;, then

P(ANE) =Y p (ANE)VA€H. (3)
i=1
Proof. Consider E; and E,. Since E1 N Ey = 0,y C ES and E; C Ef. Taking
E =F; and F = E5 in (2), we get:
(AN (EL1UEY)) =pu" (ANEL) + p (AN Ey).

By induction, we get:
n
pHAN (UL E) = 3 (AN By,
i=1
Let F,, = U E;. F, € S since S is a ring.
Let A € H be arbitrary. Then

W(A) = 1" (AN Fy) + u' (AN FY)

=S WHANE) + (AN FY)
i=1
(4)
n
> Z wW(ANE;) + u* (AN E°) by monotonicity.
i=1

The above is true for every n € N. Hence

W(A) =Y p (AN E) + p (AN E°), ()
i=1

Now replace A by AN E in (5) to get:

ANE) > 1 (AN E).

I>r

Il
-

K2

But by subadditivity, we already have

1

N
Il
_

p(ANE) <Y u(ANE).

Now, substituting in (4), we get
p(A) = p (ANE).
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By subadditivty,
p(A) S p(ANE).

Hence E € S. Thus, S is closed under countable disjoint unions. But this is
sufficient to show that it is a o-ring, since it is already known to be a ring. O

Theorem 2.24 (Caratheodory Extension). Let H be a hereditary o-ring and p*
be an outer measure on H. Let S be the o-ring of u* measurable sets. Define for
E € S, i(E) = p*(E). Then i is a measure on S, which is complete. That is, if
i(E)=0 and F C E, then F € S and i(F) = 0.

Proof. Let {E;}22, be a disjoint sequence in S, F = U°, E;. Taking A = E in (3),
we get

So i is a measure on S. Next, let u*(E) = 0 for some E € H. Let A € H be
arbitrary. Then

pr(A) = p(A) + 7 (E)
> (ANES) +p*(ANE).

But already, p*(A) < p*(AN E¢) + p*(ANE). Hence E € S. By monotonicity, if
F CE, u*(F) =0 and so i is complete. O

Theorem 2.25. Let R be a ring, p a measure on R. Let H(R) be the hereditary
o-ring generated by R. Let pu* be the canonical outer measure on H(R). Let S
be the o-ring of u* measurable sets. Then S(R), the o-ring generated by R, is
contained in S.

Proof. It suffices to show that R € S. Let E € R, A € H(R) be arbitrary. We
must show that p*(A) > p*(ANE)+p*(ANE°). If p*(A) = oo, there is nothing to
prove. Assume p*(A) < co. Let € > 0. Then 3{E;}5°, C R such that A C U°, E;
and Y .o u(E;) < p*(A) +e. We have

WA +e> S uE)
=Y wWENE)+> (BN E)
=1 1=1
=> w(ENE)+Y p*(E;NE°)
=1 1=1
> (AN E) + p (AN E°) by subadditivity.

Hence EeS =— RCS. O

Proposition 2.26. Let E € H(R). Then

p*(E) =inf{i(F): Fe€S,ECF}
=if{a(F): FeS(R),EC F}
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Proof.
= inf {Zu :ECUZE,E; € R}

= inf {Z i(E;): ECUX E;, E; € R}

>inf {) A(E;): E CUR, E;, E; € S(R)}

> inf {ji(U%, (E) : B C U, B, By € S(R))
=inf {(F): EC F,F € S(R)}
>inf {a(F): EC F,F eS8}

> 1*(B) (since i(F) = p*(F) > u*(E)).
O

Thus equality must hold in every step. In particular, we record the following
equality:
i (B) = inf {1(U2, (By) : B € UR, By, By € S(R))}.
But the right hand side of the above equality, by the definition of an outer measure,
is equal to ()*(E). Thus, if we start with the measure i on the o-ring S(R), the
corresponding outer measure is p*.

Definition 2.27. Let E € H(R). When F D E,F € S(R), we say that F is a
measurable cover of E if whenever G € S(R) and G C F'\ E, then i(G) = 0.

Proposition 2.28. Let E € H(R) and pu*(E) < oo. Then there exists a measurable
cover of E.

Proof. Let n € N. Since u*(F) < oo, by Proposition 2.26, 3F,, € S(R) such that
E CF, and [i(F,) < p*(E)+ L. Let F =n52,. Then F € S(R) and E C F, and

. . . ) i 1
pHE) < @ (F) < @ (Fn) = pFn) <p™(E) + — VneN.
Hence
p'(E) = p*(F) = a(F).

Let GC F\E, G S(R). Then EC F\ G and pu(G) < co.

A(F) = 1" (B) < u*(F\ G) = i(F\ G) = i(F) — i(G).
By finiteness of a(F'), i(G) = 0. O
Remark 2.29. The above is true if p is o-finite.
Remark 2.30. If p is o-finite, then p* is o-finite. Hence [ is o-finite on S(R) and
S.

3. LEBESGUE MEASURE

Let P = {[a,b) : a,b € R,a < b} and R be the set of finite unions of elements
from P. R can also be shown to be equal to the set of finite disjoint unions of
elements of P.

Define p([a, b)) :=b— a, u(0) = 0.



10 NOTES ON MEASURE THEORY

Proposition 3.1. Let {Ey, - -, E,} be a finite disjoint collection of elements from
P, all of them contained in Eg € P. Then >, u(E;) < p(Ep.

Proof. Let E; = [a;,b;),i =0,1,--- ,n. If necessary, renumber the sets so that, by
virtue for disjointness, ag < a1 < b1 <ag < by <--- < by

n

Do E) = (b —a;)

i=1 i=1
n n—1
< Z(b’ a;) + Z(alﬂ b;)
i=1 i=1
=b, —a1
< by —agp
= u(Eo)

O

Proposition 3.2. Let Fy = [ao,bo)| be a closed interval contained in the union of
open intervals U; = (a;,b;),i=1,2,--- ,n. Then by —ag < >,_, 6n(b; — a;).

Proof. Renumber and get rid of superfluous open intervals if necessary so that
b; € (ai+1,bi+1)Vi. Then ag € Ul,bo € U, and

n—1 n
bp —ap < bp —a1 = (b1 —ay) +Z (bit1 — b;) Szb—az
=1 i=1

O

Proposition 3.3. Let {Ey, Ey,---
U, E;. Then p(Ey) < >0, pu(E;).

yEn,---} be a sequence in P such that Ey C

Proof. The result is trivial if Ey = (). So assume Ey # 0, i.e., by — ag > 0. Choose
€ > 0such that 0 < e < bo = ag. Let § > 0 be arbitrary. Then Fy = [ag, by —€] C Ey
Similarly, U; = (a; — 2, bi;). So E; C U;. Hence, Fy C U2, U;. As Fy is compact,
dn € N such that Fy C U7, U;. By Proposition 3.2,

bg—e—ag < Z (ll—‘r%)SZ(b
=1 =1

Since € and § are arbitrary, we get bp—ag < Y1 (bi—a;), L.e., u(Eo) < >0y p(E;).
O

Proposition 3.4. pu is countably additive on P. That is, if {E;} C P, E; disjoint,
E = UX,E; € P, then p(E) = 3%, u(Ey).

Proof. By Proposition 3.3, u(E) < >°:°, u(E;). By Proposition 3.1, Y1 | u(E;) <
w(E)Vn € N. Hence >.:°, u(E;) < pu(E) O

Theorem 3.5. 3 a measure fi on R such that

jil[a,b)) = p(fa,b) = b— aV[a,b) € P.
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Proof. Let £ € R,E = U, = U, with E;, F; € P, E;, I disjoint. Then
E;, = U;nzl(Ei N F])VZ and Fj = U?:1(Fj N E»Vm So M(Ei) = E;nzl M(Ei n Fj)
and u(Fy) = Sy p(Fy 1 Ey). Hence Yy p(Es) = Yy Sy n(Ei 1 Fy) =
Z; 1 M(Fj). So we define i as follows: Let E € R, E = U, E; € P, E; disjoint.
Let a(E) = >, u(E;). Then

>0
is finitely additive.
is countably additive.

Q

We now prove that fi is countably additive. Let E = U2, E;,E € R, E; € R, E;
disjoint. Then for each i, E; = U}", Eji, By, € P, Eyy, disjoint.

(1) If E € P, then E = U2, Uy, Ey, By, € P, E € P. By Proposition 3.4,

( ) Z’L IZk 1“( ) Zz:lM(E’ik)'
(2) f E € R, then E = U} |F;,F; € P disjoint. Then F; = ENF; =

U2, B; N F;, where the F; N F} are in R and disjoint. Now,

E; =ENE; =Uj;_,E; N F;. Hence by finite additivity of £,

O

Hereafter we refer to i as merely p. Thus we now have a measure y on the ring
R. By the Caratheodory extension theorem, we get the completion of u, u* from
which we get fi on the o-rings S(R) and S. [i is called the Lebesgue measure on
R, and sets in S are called Lebesgue measurable sets.

Since R = Upez[n,n + 1),R € H(R). Hence H(R) is in fact a o-algebra and is
equal to all the subsets of R. fi(R) = oo, but f is a o-finite measure. Henceforth
we drop the bar and simply write pu.

Suppose we take R™ instead of R. Let P = {[[\;[ai,b;) : a; < b;}. Then
Propositions 3.1, 3.2, 3.3 and 3.4 are true, so that all of the above is true.

What is u(R) in (R?, i), where p is the Lebesgue measure in R?? Tt is 0. To
prove this, let [a,b) C R. Let E. = [a,b) x [0,¢). Then u(E,.) = (b — a). Since
[a,b) x {0} = My B1, p([a, b) x {0}) = nleréO%(b —a)=0.Now R =R x {0} =

Unez[n,n + 1) x {0}. Hence p(R) = 0.
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In general, if p is the Lebesgue measure on R", and if F is a subspace of R"
with dimension strictly less than n, then pu(E) = 0.

Proposition 3.6. S(R) = S(U), where U is the collection of all open subsets of
R. That is, S(R) is the Borel o- algebra on R.

Proof. Let a,b € R. (a,b) = [a,b) \ {a} and {a} = NZ[a,a + ) € S(R).
Hence (a,b) € S(R). Since every open set is the countable union of open intervals,
U C S(R). Hence S(U) C S(R).

Conversely, [a,b) = (a,b) U {a} and {a} = N3 (a — L,a+ 1) € S(U). Thus
[a,0) e S(U) = PCS(U) = RCSU) = S(R)CSU). O

Corollary 3.7. Every countable set is Borel measurable and its measure is 0.

Proof. We have seen that {a} =32, (a— 2,a+ 1) € S(U) = S(R) and pu({A}) =
ILm % = 0. By countable additivity, the emasure of a countable set is 0. O

Proposition 3.8. Let E C R. Then p*(E) = inf {u*(U) : U open, E C U}.

Proof. The proposition is trivially true if p*(E) = oco. Assume p*(E) < oco. If
E c U, then p*(E) < p*(U). Hence p*(E) < inf {u*(U) : U open, E C U}. Let
€ > 0. Then 3E; = [a;,b;) such that E C U2, E; and Y1 | u(E;) < p*(E) + 5.
Le, Yoo (b —a;) < p*(E)+ 5.

E; Cc Ui = (ai — 5571, bi). Let U = U2, U;, an open set. Then £ C U and
p*(U) < 32 (b —ai) + 5 < p*(E) + e. Hence p*(E) = inf {u*(U) : U open, E C
U}. O

Proposition 3.9. Let E CR. Then the following are equivalent:

(1) E is (Lebesgue) measurable.

(2) Given € >0, 3 an open set U such that E CU, u*(U\ E) < e.
(8) Given € >0, 3 a closed set F' such that F C E, p*(E\ F) < e.
(4) 3G, a G5 set such that E C G, u*(G\ E) =0.

(5) AF, an F, set such that F C E, p*(E\ F) = 0.

Proof. We first show that (1) = (2) = (4) = (1). Suppose (1) holds.
First assume that p*(E) < oco. For € > 0,3U open such that £ C U and p*(U) <
w*(E) + €. Since E is measurable, u*(U\ E) = p*(U) — p*(E) < e. If p*(E) = o0,
we can write E = U2, E;, u*(F;) < oo, by o finiteness. For each E;, 3U; such
that u*(U; \ E;) < 57. Let U = UXU;, which is open. A=Then, £ C U and
p*(UN\E) <32 p* (Ui \ E;) < Y721 5 = €. Hence (2) holds.

Next, suppose (2) holds. Given E, choose U,, open such that u*(U, \ E) < %
Let G = N32,U,. Then E C G and p*(G\ E) < p*(U, \ E) < 1vn. Hence
p*(G\ E) =0, ie., (4) holds.

Finally, suppose (4) holds. p*(G\ E) = 0 = G\ E is measurable, since

*

u* is a complete measure. G is Borel measurable since it is a G set, and hence
measurable. Hence F = G \ (G \ E) is measurable, i.e. (1) holds.
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Finally, we show that (1) = (3) = (4). Suppose FE is measurable. Then
E€ is measurable. Since (1) = (2), for € > 0, 3U open such that F¢ C U and
w*(U\ E°) <e. Let F=U° Then F is closed and F' C E. Since U \ E° = E\U®,
we get u*(E\ F) = w*(E\U*) = u*(U \ B°) < e.

Suppose (3) holds. Given E, choose F;, closed such that F,, C FE and p*(E\F,) <
1 Let F = U2 F,. Then F C E and p*(E\ F) < p*(E\ F,) < 1Vn. Hence
i (E\ F) = 0.

Suppose (5) holds. Since p*(E\ F) = 0, E \ F is measurable. F is measurable
as it is an F, set. Hence E = (E \ F) U F' is measurable. O

Let X = [0,1], X1 = (3,2)), X2 = (5, 2)U(4, 3), X5 the union of the four middle
third intervals of X \ (X7 U X5). Let C' = X \ (USZ;X,,). Then the following hold:

(1) Each X,, is open and hence C' is closed.

(2) p(X1) = ,w(X2) = 2,1(Xs) = 5. Tn gemeral, u(X,,) = L. Hence
p(U2 X, =1 and pu(C) = 0. C can be thought of as the set of num-
bers between 0 and 1 such that 1 does not occur anywhere in its ternary
expansion.

(3) C is uncountable by Cantor’s diagonalisation,

(4) C is nowhere dense.

1(C) = 0 implies that every subset of C' is measurable. The cardinality of C is
¢ (continuum), hence the cardinality of Lebesgue measurable sets is 2¢. However,
it can be shown that the cardinality of Borel measurable sets is ¢. Hence Borel
measurable sets are properly contained in Lebesgue measurable sets. In particular,
this means that the Borel measure on S(R) on R is not complete.

Let T : R — R be given by Tz = ax + 3, « > 0. Then T is a bijection and
Tl =28

Let S = S(R) be the Borel o-algebra. Let T(S) = {T'(E) : E € S}. Then T'(S)
is a o-algebra. Since T is a bijection, T(R) = R. T(A\ B) = T(A) \ T(B) and
T(UE;) = U T(E;).

ISy

Suppose E = [a,b) = T(F), where F = [“;ﬂ, b;
S C T(S). Similarly, S ¢ T=*(S) and thus T(S) =
T(FE) is a Borel set.

). Hence P C T(S) and thus
S. Thus, F is a Borel set iff

Proposition 3.10. Let E C R. Then p*(T(E)) = ap*(E).

Proof. p*(T(E)) =inf {d> u(F;): F; € P,T(E) C UF;}. But F; = T(E;) for some
E; € Pand E; D E. Hence p*(T(E)) = inf {d_ pu(T(E;)) : E; € P,E C UE;}. If
E; = [a,b),T(E;) = [aa+ B,ab+ B) and pu(T(F;)) = a(b — a) = ap*(E). Hence
W (T(E)) = ap*(E). .
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Now assume E C R is Lebesgue measurable. We claim that T(FE) is Lebesgue
measurable. Let A C R. Then

W (ANT(E)) + 1 (AN (T(E))°) = p* (T(T~ 1 B)) + p*(T(T~}(4) N %))
— alu* (T~ (A) 1 B) 4+ u*(T~1(4) (1 B°)]
= au*(T~1(A)) since E is Lebesgue measurable

=a—u*(A).
a—p(4)
Remark 3.11. If o = 1, then all of the above goes through in R" as well.

Remark 3.12. If « = 1,T(E + z) = T(F)VE,Vz. That is, the Lebesgue measure
is translation invariant.

Theorem 3.13. Let v be a Borel measure on RY such that

(1) v(K) < oo VK CR"™ compact
(2) v(E) = inf{v(V):Vopen ,E CV} VE Borel
(8) v is translation invariant.

Then 3 a constant ¢ € R such that v = cu, i.e. for all Borel measurable sets
E, v(E) = cu(E).

Proof. Let a = (a1, -+ ,an) € RY and § > 0. Let Q(a,d) = Hﬁ\;[ahai +9).
Denote by €2, the collection of all boxes of this form where § = 27" and a has
coordinates which are integral multiples of 27".

(1) If z € RV, then x belongs to exactly one box of Q,, Vn.

(2) Every open set is the countable disjoint union of boxes taken from ; U
QoU---.

(3) Let @ = Q(a,1). Then Q is the disjoint union of 2V” identical boxes Q
from €,,.

Since v and p are translation invariant, all these boxes have the same measure.
w(Q) =1. Let v¥(Q) = ¢. Then

2Y"(Q) = v(Q) = ¢ = eul(Q) = 2" u(Q).

Hence v(Q) = cu(Q). By (2), it follows that if U is open, v(U) = cu(Q). By the
second hypothesis, v(E) = cu(E). O

Theorem 3.14. Let A : R™ — R" be linear. Then for all Borel sets E in R™,
H(A(E)) = |det Al(E).

Proof. (1) If Aissingular, then A(E) C A(R™) = a lower dimensional subspace
of R™. Then u(A(R™)) = 0. Hence A(FE) is Lebesgue measurable and
H(A(E)) =0 = [det Alu(E).

(2) Let A be non-singular. Now E is Borel iff A(FE) is Borel.
S ={E: A(FE) is Borel} is a o-algebra since E open iff A(E) open, F =
UE;, E; disjoint, then A(E) = UA(E;). Define v(F) = pu(A(E)). Then
v is a measure on S. K compact implies that A(FE) is compact. Hence
V(K) = p(A(K)) < oo and v(E + x) = u(A(F) + Az) = u(A(E)) = v(E).
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Thus v is translation invariant. £ C V is open iff A(E) C A(V) is open.
Hence
inf {v(V):V D E,V open } =inf {u(A(V)):V D E}
— inf {u(A(V)) : A(V) > A(E))

= u(A(E))
=v(E).
Hence v = cap by Theorem 3.13. Claim: cap = cacp.

Exercise 3.15. (a) If A is orthogonal and E the unit ball. Show that
A(E)=E = ca=1=det A.

(b) A diagonal, A = diag (A1, ,A\n), A > 0Vi and E = [0,1]". Then
A(B) =TI/, [0, A, and p(A(E)) = T2, A = det A.

(¢) A non-singular. Then A = RQ, where R is positive definite and @
orthogonal. R can further be written as P DP, where P is orthogonal
and D is diagonal. Then A = PTDPQ and c4 = det D = |det A.

We now construct a non-(Lebesge) measurable set. Let 2,y € [0,1). Then

o4y = r+y, r+y<l
Y z+y—1, z+y>1

Let E C [0,1). Then E+y={x+y:xz € E}.

Lemma 3.16. If E C [0, 1) is measurable, then E+y is measurable for ally € [0, 1]
and (E +y) = p(E).

Proof. For each y € Y, let By = EN[0,1—y) and E3 = EN[l —y,1). They are
disjoint and p(F) = u(Fy + u(Es). Ev+y=FEi+yand Ex+y = Ex + (y — 1).
Claim: (Ey +y)N(F2+y) =. If not, suppose Ja,b € [0, 1) such that a € Eq,b € F»
and a+y =b+y—1. Then b — a = 1 which is a contradiction, since a,b € [0,1).
Hence
n(E+y) = p(Er +y) + u(Ez +y)

= p(Er + p(E2)

H(E).

O

Let z,y € [0,1). Define a relation on [0,1) by: z ~y <— z—y € Q.
This is an equivalence relation. Thus, [0,1) can be written as the disjoint union of
equivalence classes. Let P be the set made up of exactly one representative from
each equivalence class, using the axiom of choice.

Claim: P is not measurable. Let {r;} be an enumeration of the set in [0, 1) such
that ro = 0. Let P; = P + r;. The P;s are mutually disjoint, for if x € P; N P},
then z = r, +p; = r; +p;,pi,p; € P = p;—p; € Q = p; ~ p;. For
each i, u)P;) = p(P) and U2, P, = [0,1). If P is measurable, then Y u(FP;) =1, a
contradiction. Hence S C P(R).

Remark 3.17. (1) Let E C P be measurable and E; = E 4+ r;. The E;s are
disjoint measurable sets and u(E;) = u(E). Then 1 > u(E) = > u(E;).
Hence the only measurable subsets of P are of emasure 0.
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(2) Let A C [0,1),u(A) >0 and E; = AN P,. If all E;s are measurable, then

w(A) =5 p(E;). But u(F;)0 bu the previous remark. Hence, one of the E;s

is not measurable. So every set of positive measure has a non-measurable
set.

4. MEASURABLE FUNCTIONS

Let X be a non-empty set and S be a g-algebra on X. Then (X, S) is a measur-
able spaces and elements of S are called measurable sets. Suppose p is a measure
on S. Then (X, S, p) is called a measure space.

Definition 4.1. Let X,S) be a measurable space, and f : X — RU {400} be an
extended real-valued function. Then f is said to be measurable if Yo € R, the set
{z: f(z) >a} €S, ie, fH(a,x]) € SVa € R.

Remark 4.2. Let X =R and f: X — RU{+oo}. Then f is said to be Lebesgue
(respectively Borel) measurable if f~1((—o0,00)) is a Lebesgue (respectively Borel)
measurable set.

Proposition 4.3. Let f be an extended real-valued function on a measurable space
(X,S). Then the following are equivalent:

(1) Ya € R, f~1((a, 00]) € S.
(2) Va € R, f~1([a,0]) € S.
(3) Va € R, f1([~00,)) € S
(4) Ya €R, f7}([—00,0]) € S

Proof. (1) = (2) follows fromf Yoy oo]) = NufH(a = L,00]). (2) = (3)

follows from f~1([-o00,a)) = f~([« oo’]C) _f e, ]) . (3) = (4) follows
from f~'([oo,a]) = Nuf ([—00, a0+ 1)). (4) = (1) follows from f~!((a,00]) =
FH([=00,0]%) = f~H([-00, a]). O

Corollary 4.4. If f is measurable, then:

(1) For a € RU {oo}, f~1({a}) is measurable.
(2) ForV open in R, f~Y(V) is measurable.

Proof. (1 {oo[} = Nyp[n.co] and {—o0} = cap,[—00, —n]. For a € R, {a} =
N o, 00

)-
[—00,b) N (a,00] = f~Y((a,b) €S = f7L(V)€S.
O

Remark 4.5. Let f : X — R. Then f is measurable iff f~(U) is measurable for
all open sets U. This holds as f~1([-o0,a)) — f71((—o0,a)) € S. But f~1({a}) €
SVYa € R =& f is measurable.

Example 4.6. Let X = R and p be the Lebesgue measure. Let E be a non-
measurable subset of [0,1). Define

x, rel
flx)=4 -z, z€[0,1)\FE
-2, x¢10,1)
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Then
R\ [0,1), a= -2
_ ) —ac[0, )\ E
ORI
0, otherwise

So the inverse of each singleton set is measurable. But {x : f(x) > 0} = f~1((0,00]) =
E which is not measurable.

Exercise 4.7. (1) Let A C X. Define
() 1, z€A
xTr) =
xa 0, ¢ A

Then y 4 is measurable iff A is measurable.
(2) Every continuous function f : R — R is both Lebesgue and Borel measur-
able.

Proposition 4.8. Let f,g be measurable functions on (X,S) and ¢ € R. Then
cf, f+g and fg are all measurable.

Proof.
z:xf(z) <al= {z: f(x) <%}, ¢>0
i el {&Hﬂ@>3hc<o

In particular, — f is measurable.
{z: f(z) +9(z) <o} ={z: f(z) <a—g(x)}
— Ureg({z : f(2) <} Nfa: g(x) < a+r}

Finally, we show that f measurable implies that f? is measurable. This shows that

o . . _ (f+9°—(f=9)?
[g is measurable as fg = L9

e 25 ) — 0, a<0
{z:f*>a} {{x;f(m)>\/&}u{x;f(x)<_\/5}7 a>0

Proposition 4.9. If f is measurable then so is |f].

Proof. {x:|f(x)] < a}={z:—a< f(z) < a}.

But the converse is not true.

Example 4.10. Let E be a non-measurable set. Let

f(x){: i;g

Definition 4.11. Max {f, g} = %(f+g+|f—g\} and Min {f, g} = %(f+g—|f—g|}.
Let f* = max {f,0} and f~ = —min {f,0}. Then f = f*—f~ and |f| = fT+ /.

Proposition 4.12. Let ¢ : R — R be Borel measurable and f : X — R be a
real-valued measurable function. Then ¢ o f : X — R is measurable.



18 NOTES ON MEASURE THEORY

Proof. {z : ¢(f(z)) > a} = ¢ ((a, 00])). Now, ¢~!((r,00]) is a Borel set.
Hence it suffices to show that f measurable implies that f~!(E) is measurable for
all Borel sets E. Let S = {F : f~'(E) is measurable}. Then S is a o-algebra
containing open sets and hence contains all Borel sets. O

Proposition 4.13. Suppose {f,} is a sequence of measurable functions. Let h(z) =
supfn(x) and g(x) = inff,(x). Then h and g are measurable.

Proof. The proof follows as
{z:h(z) >c} =022 {z: fu(z) > c}
and
{z:9(x) <c} =02 {x: fulz) < c}.
O

Corollary 4.14. Suppose {f,} is a sequence of measurable functions. Then lim sup f,
n—oo

and lim inf f, are measurable.
n—oo

Proof. The proof follows as
lim sup f,(z) = inf sup fp,(z)

n— o0 m>n

and
lim inf f,(x) =sup inf f,(z)

n—o00 n m>n

O

Corollary 4.15. If {f,} is a sequence of measurable functions and f, — f, then
f is measurable.

Definition 4.16. A function of the form f = Y "  a;xa, is said to be a simple
function.

Theorem 4.17. Let f be an extended real valued measurable function which is
non-negative. Then f is the increasing limit of non-negative simple functions, i.e.
3f, simple such that fr, > 0, fr < fop1Vn and lim fp(z) = f(x) V.

n—roo

Proof. Let n € N. For i such that 1 < i < n2", define E,,; = f~([%5}, 5%)) and
F, = f~([n,00]). Then E, ;, F}, are all measurable. Define

n2™ .
i—1
Jn = (Z 7XEM) +XF, -
i=1
Then f,, > 0, f,, simple and f, < f. In fact,
n, f(z)=2n
fn(m) = {il f(x) < n and f(x) c [ifl L)
P on 2 g )
Hence f,, < fn+1 and lim f,, = f. O
n—oo

Since every measurable function f can be written as the difference of two non-
negative functions, i.e. f = f* — f~, we get the folloowing corollary.

Corollary 4.18. FEvery measurable function is the pointwise limit of simple func-
tions.
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4.1. The Cantor Function. Let C = [0,1] and C be the Cantor set. Define
folx) =2 VaxelX,

x, z €0, 3]
fi(z) =143, zels, 3]
2e-H+h selhl
x, z€[0,3]
o z €[5 5]
2e—1)+1, wel2]]
fa(2) = 4 3, v € [3,3]
o3 +h el
5 z € [ 5]
dz—2)-1%, ze[8 1]

37

Continuing in this fashion we get a sequence {f,} such that f, < f,41n, and
+1 +1

max | fo(2) = fusr(2)] < 377 Hence |fo — fusille < 37, Hence {fn} is

uniformly Cauchy. Thus f,, — f uniformly to a continuous functlon f. f is non-

decreasing and is constant on each interval in the complement of the Cantor set. f

is called the Cantor function.

©

Define ¥(y) = y + f(y). Then v is continuous, non-negative and strictly mono-
tonic. psi(0) = 0,4 (1) = 2, and hence ¢ : [0, 1] — [0, 2] is 1—1 and onto. Let ¢ be its
inverse, i.e., x = ¢(x)+ f(P(x)). Then ¢ is also monotonic; x >y = ¢(x) > ¢(y).

Now,
z—y=¢(x) = o(y) + f(6(x)) — f(&(y)),
and f(¢(x)) — f(é(y)) = 0. Hence |p(x) — ¢(y)| < | —yl, i.e. ¢ is Lipschitz

continuous. In particular, it is continuous.

Since 1 is 1 — 1, it maps disjoint sets into disjoint sets. Let I be an interval in
C¢. Let € I. Then ¢(x) = x + ¢;, where f takes the value ¢; on I. Hence ¢(I)
is a translate of I. Thus

1(C€) = p((C°))

=1.
Hence p(y(C)) = 1 as pu(¥p(X)) = 2. Let S be a non-measurable set contained
in ¥(C). Let M = = 1(S) ¢ C. Then M is Lebesgue measurable since p is
complete and p(C') = 0. Claim: M is not Borel measurable. Suppose M were Borel
measurable.Then ¢~ (M) is Borel measurable as ¢ is continuous. Then ¢~ (M) is
Lebesgue measurable. But ¢~1(M) = S. Hence we get a contradiction.

Let ® = xa;. Then & is Lebesgue measurable. Define n = ® o ¢. 7. Since ¥
is continuous, it is Lebesgue measurable. If n were measurable, then n~({1}) is
measurable. But .

({1}) ={z :n(z) =1}
={z: 2(¢(x)) =1}
=¢ (M)

which is not measurable. Hence the composition of two measurable functions need
not be measurable.

Definition 4.19. An occurrence is said to happen almost everywhere if it occurs
on a set E such that u(E°) = 0.



20 NOTES ON MEASURE THEORY

Exercise 4.20. Are the following statements equivalent? Or does any one imply
the other?

(1) f is continuous almost everywhere (a.e).
(2) f = g almost everywhere, and g is continuous.

In fact, neither statement implies the other. To see that (1) =& (2), let

f(x):{o, z <0

1, z>0

Then f is continuous almost everywhere. But for any g which is equal to f a.e., g
is not continuous. For (2) =& (1), let f = xg and g = 0 on R. Then f = g a.e.
and ¢ is continuous, but f is discontinuous everywhere.

Theorem 4.21 (Egoroff). Let (X,S,u) be a measure space and u(X) < o0o. Sup-
pose {fn} is a sequence of measurable real valued functions converging pointwise to
a real-valued measurable function. Then given ¢ > 0,3F € S wtth u(F) < € such
that f,, — f uniformly on F°.

Proof. Let n,m € N. Define
~ 1
= e o) - ol < )

2 € Enm = Vi>n,|fi(x) — f(z)] < L. Hence for each m € N,

El,m C E2,m c---C En,m C En—i—l,m Cee
For z € X and m € N,3n,, such that n > n,, = |f,(z) — f(z)] < L.

o0
=zl n = X:UEmm vYm € N.

n=1

Now, 4(X) < oo = I n,, such that
€
:U'(X \ Enm,m) = N’(X) - ,LL(Enm,m) <om:
Let
= X\ En,m)

m=1

Then mu(F) < oo and

oo
= m Enm,m'
m=1

Guven 7 > 0 choose m such that % <. Since z € By, m, YN > 1y,
1
[fu(2) = f(@)] < — <n Vae e
O

Remark 4.22. Egoroff’s theorem is not true if u(X) = oco. Here is a counter
example.
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Example 4.23. Let X = N, S = P(N) and p be the counting measure. The only
measure zero set in this measure space is the empty set. Hence if Egoroff’s theorem
were true, pointwise convergence would imply uniform convergence everywhere. Let
fn = X{1,2,-- ,n}- Then pointwise, f, — f =1, a constant. But for every n € N and
m >n, f,(m)=0and f,,(m)=1. Hence f,, 4 f uniformly.

Definition 4.24. A sequence f, is said to converge to f almost uniformly if Ve >
0,3F € S such that u(F) < € and fiy — f uniformly on F*°.

Theorem 4.25. f, — f almost uniformly — f, — f pointwise almost every-
where.

Proof. For each m € N,3F,, € § with u(F,,) < % such that f, — f uniformly on
Er . Let

F= () Fun
m=1
Then u(F) = 0.
Fe= () FS.
m=1
Hence f,(z) = f(z)Vx € F° ie., f, — f almost everywhere. O

Theorem 4.26 (Lusin). Let f be a Lebesgue measurable function on [a,b] C R.
Then given € > 0,3 a continuous function ¢ such that u({x : f(z) # ¢(z)}) < e
and sup || < sup |-

Proof. We first prove the theorem for characteristic functions. Let f = xg, E € S.
Then 3U open, F closed such that FF C E C U and u(U\E) < § and u(E\F) < 5.
By Urysohn’s lemma, 3¢ continuous function with 0 < ¢ <1 and

1, on F
0= {07 on U°
Hence {z : f(x) # ¢(x)} C U\ F and pu(U \ F) < e. Next, let f be a simple

function, i.e.,
n
f = § Qi XA;-
i=1

For each i, 3¢; such that pu({z : ¢; # xa,}) < £. Let

¢=> i
i=1

Then ¢ is continuous and

fo: 6() # f@} < fz s 6i(x) # fil)}.
i=1
Hence p({z : ¢(x) # f(x)}) < e. Next we consider a non-negative measurable
function. Then by Theorem 4.17, 3f,, > 0 simple functions such that f, ~ f.
BY Egoroff’s theorem, 3F with u(F) < § and such that f, — f uniformly on
F¢. By regularity of the Lebesgue measure, 3Cy C F C [a,b] compact such that
pu(Fe\ C) < §. Hence u(la,b] \ Co) < § and f, — f uniformly on Cy. Since each
[n is simple, 3¢, continuous such that u({¢, # fn}) < s=5r. Hence 3C, closed

such that {¢, # fn} = [a,b] \ C), and pu([a,b] \ Cp) < 5757. Let C = ﬁ Cp. Then

n=0
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u([a, 0]\ C) < e. Cis compact and ¢,, is continuous on C for each n. Also, ¢,, = f,
for each n on C. Hence ¢,, converges uniformly on C to a continuous function ¢,
with ¢ = f on C. By Tietze extension theorem, ¢ can be extended to a continuous
function on [a, b]. Hence, u({¢p # f}) < p([a,b] \ C) < e. O

Definition 4.27 (Convergence in measure). A sequence {f,} is said to converge
to f in measure if

Ve > 0, lim_u({z: | falx) ~ f(2)] > }) = 0.

{fn} is said to be Cauchy in measure if Ve > 0 and 6 > 0, IN such that ¥n,m >
N, p({z : [fn(@) = frm(z)] = €}) < 6.

Proposition 4.28. Let f, & f and g 2 g. Then Vo, 8 € R, afn + Bgn =

af +fg.
Proof.
[(afn(@) + Bgn(2)) = (af(z) + Bg(2))| < |allfn(z) = f(2)] +|Blgn(z) — g(z)|-

Hence

p({z = [(afu(@)+Bgn(x))—(af (2)+Bg(x))| = €}) < p({z : [fu(z)—f(z)| = i})ﬂt({w “gn (@) —g(2)| = %})-
t

Proposition 4.29. Let f, — f. Then |f,| — |f].

Proof. The proof follows since ||fn, () — |f(2)|] < |fu(z) — f(2)]. O

Proposition 4.30. Let u(X) < oo and f,, [ be real valued functions. Suppose
fo 5 f and g, & g. Then fogn & fg.

Proof. Tt suffices to show that f2 £, £2. Suppose first that f, = 0.
p{z = | fu(@)?) 2 € < u{z : | fal@)] = Veb).

In general, if f, & f, then f, — f £ 0. Let E, = {z : |f(z)] > n}. Then
E, 0. Since u(X) < oo, lim pu(E,) = 0. Given § > 0, choose m € N such that
n—oo

w(Ey) < d¥n >m. On ES,, |f| > m. Now,
(@ [fu(@) [(@) =) = e} = {z : [fuf (2)=F*(2)] > NEnU{z : |fuf (x)=f*(2)] > NE;,.
On Ey, |fuf = f2| < [f|lfa = fI < m|fa — f|. Hence, |fo — f| > 5 on the set
ES, N {x:|fof — f?| > €}. Hence,
w{a s 1fuf = P12 ) <6+ p{w:1f = f1= ).
Hence fof & f2. Now (fu — f)? = f2 = 2fuf + 2 = (£} = ) + 2= fuf + [?).
Hence f2 — f2 4 0. O

Example 4.31. Proposition 4.30 is not true if u(X) = oo. Let X = N, § = P(N)
and p be the counting emasure. Let

fn(k)={’1”1§k§n

0,k>n
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Then f, — 0 uniformly, hence f,, £ 0. (This is true since {z : |f,(z) — f(z)| >
€} = ¢ for n large. Next, let g(z) = n. Then for € < 1, f,g(n) = 1. Hence
u{z : |frng(x)| > €}) > 1Vn. Hence f,g does not converge to 0 in measure.

Proposition 4.32. Let pu(X) < oo. Suppose {fn} is a sequence of real valued
functions and f,, — f almost everywhere, f a real valued function. Then f, £ f.

Proof. Let D ={z: f,(z) » f(z)}. Then u(D) = 0.

= U lim sup FE,(e).

>0 n—00

Since u(D) =0, Ve > 0, u({ lim sup E,(€)}) = 0. Since p(X) < oo,

n—oo

= pu({ lim sup E,(e)})

n—oo

lim sup u(E,(€))
lim inf pu(E,,(€))
0.

(\VAR VARV

Hence lim p(E,(e)) = 0. That is, f, = f. O

n—oo

Example 4.33. Proposition 4.32 is not true if u(X) = infty. Let X = N,§ =
P(N) and g be the counting measure. f, - f <= f, — f uniformly. Let
Jn = X{1,2,--,n}- Then f,, — f =1 pointwise, but not uniformly.

Example 4.34. Convergence in measure does not imply convergence almost ev-
erywhere, even in a finite measure space. Let X = [0, 1], mu be the Lebesgue
measure. Let x7 = X[i=t, i]- Let z € [0,1] and n € N. Consider the sequence

{x1,x2:x2%,x3% x3,x3,---}. Then Ji such that xj,(z) = 1 and 3j such that
X2, () = 0. Hence this sequence does not converge for any x. But it converges
in measure since p({z : [x}(z)| > €}) = 1 — 0.

Lemma 4.35 (Borel-Cantelli). Let {Ex} be a sequence of measurable sets such
that Z w(E;) < oo. Then except on a set of measure 0, every x belongs to at most
ﬁmtely many Eys.

o0

Proof. Let E = {z : x belongs to infinitely many Ey}. Then E = (| U En.

n=1m=n

Hence u(E) < p( Ej E,) < ij w(Em)Vn. Hence p(E) = 0. O

m=n

Proposition 4.36. Let f, LN f. Then there exists a subsequence which converges
to f almost everywhere.

Proof. Let E,, m = {z : |fu(z )— f(@)] = L}. Then Vm, 3ng(m) such that Vn >

no(m), W(En,m) < 7. Then Z (Eng(m),m) < Z 7= < oo. By the Borel-
Cantelli lemma, 3E with ,u(E) — 0 such that Vz ¢ € EC x belongs to at most
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finitely many sets Ey(m)m. That is, Vo € E¢, 3N (that depends on x) such that
if m > N, then @ ¢ Ep(m),m. That is, Vm > N, |fuom)(z) — f(z)| < . That is,
from) (@) = f(x) Vo € B, u(E) = 0. O

Proposition 4.37. If f, & f, then {fn} is Cauchy in measure. If also f, £ g,
then f = g almost everywhere.

Proof. The proof of the first part follows since {z : |f.(x) — fi(2)] > €} C {x :
[fa(z) = f(@)] > §3U{z : |fn(z) = f(x)] > §}. Suppose fn =+ to f and g.
Then for € >, p({z : [fu(z) = g(2)] 2 €}) < p({z : |fu(z) = f(@)] = 5}) + p({z :
|fn(z) — g(x)| > §}) Vn. Taking the limit as n — oo, we get u({z : |f(z) — g(x)| >
€}) =0Ve > 0. O
Proposition 4.38. Suppose {f.} is Cauchy in measure. Then 3 a subsequence
such that {fn,} is almost uniformly Cauchy.

Proof. Given k € N, 3n(k) such that Vn,m > n(k), p({z : | fu(z) = fm(z)] = 3£ }) <
Qik. Let

ny=n(l)>1

ng =max {n; +1,n(2)} > 2

ng =max {nz + 1,n(3)} >3
and so on. Let Ej = {z : |fn, (@) = fa,y (#)] = 55} Then p(Er) < 5. Given
6 > 0, choose k such that Zk%l <. Let F = Ex UEg4q U---. Then pu(F) <
Zu(E)):zk%l < 6. Let € > 0. Choose ¢ > k such that 2%1 <e Leti <1<
i=1
m,r € F° = ‘ﬂk ooEj. Then

j=

m—1

‘fm(‘r) - fn7n($)| < Z |fn](m) - fnj+1<x)|

J=l

<Z?

<

Hence {f»,} is Cauchy on F° and u(F) < 4.
t

Proposition 4.39. Suppose {f,} is Cauchy in measure. Then there exists f mea-
surable such that f, £ f.

Proof. By Proposition 4.1, let {f,,} be a subsequence which is almost uniformly
Cauchy. Then {f,, } is Cauchy almost everywhere. Hence there exists a measurable
function f such that f,, — f almsot everywhere. But this implies that f,,, — f
almost uniformly. Now, {x : |f.(z) — f(2)| > €} C{z: |fu(2) = fa,(x)] > STU{z:
|fn(z) = f(z)] > §}. Let n > 0. Then IN; € N such that n,np > Ny = pu({z :
|fn(x) = fn,(x)| > €}) < 3 since {f,,} is Cauchy in measure. Also, f,, — f almost
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uniformly implies that there exists a set E' of measure less than 7 and No € N such
that Vng > Na, | fn, () — f(z)| < eon E°. That is, Vng > No,{z : | fn, () — f(x)| >
€} C E. Take N = max {Ny,Na}. Then Vn > N, u({x : |fo(z) — f(x)] > €}) <n.
Hence f, 2 f. O

Proposition 4.40. Suppose f, — f almost uniformly. Then f, > f.

Proof. Let €, > 0. Then 3F, u(F) < ¢ such that f, — f uniformly on F*€.
Then Jng(e) such that Vn > ng(e) and Vo € F€, |f,(z) — f(z)] < e. That is,
Vn = no(e), {z : [fu(z) — f(2)] = €} C F. Hence u({z : [fu(z) — f(2)] = €}) < 4.
Hence glinoou({x | ful(x) = f(z)| > €}) = 0. That is, f,, & f. O

Finally we have the following implications:

X)<oco .
Convergence almost everywhere % Convergence almost uniformly= Con-
goro

vergence almost everywhere.

pn(X)<oo . subsequence
Convergence almost everywhere =—==== Convergence in measure ——= C

vergence almost everywhere.

. subsequence .
Convergence in measure —————=- Convergence almost uniformly = Convergence

in measure.

on-

5. INTEGRATION

Let (X,S, ) be a measure space. Suppose ¢ is a function on X such that

its range is a finite set {1, ,a,} with each a; > 0. Let A; = ¢~ 1(a;). Then
¢ =Y a;xa, where the A;s are disjoint. Such a function is called a simple function.
i=1
Define the integral of ¢ as [ ¢pdu = > aip(4;).
X i=1

m
If ¢ = > Bjxs,, where the Bjs are disjoint, then each B; is contained in some
j=1
A; and in the case 8; = o;. A; = |J Bj. Hence pu(A;) = >, p(B;). Hence
BJ'CA,' BjCAi

i)l aip(A;) = g:l Biu(Bj).

Now, let us consider the case of general E; which need not be disjoint. Suppose

N Ae=1
¢ = Z ciXE;- Let A;,--- A, C X. Let A° =
i=1 Al e=—1
Let € = (€1, - ,€n), 6 = £1 and ¢g = (—1,---,—1). Let A, = () 6nA:",
i=1
Aoy = NAS=UM@A) Nowe=1n <= ¢ =nVi. e£n=ANA, =0. We
i=1 i=1
claim that A; = U A.. Clearly, |J A C A;. Conversely, if x € A;. Let
e;=1 and e#e¢g €;=1

+1, z € Ay, (Hence ¢; = 1)
€. =
b —17 T §é Ak.
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Let € = (e;). Then z € A.. A, are disjoint. ¢ = > ¢;xg,. Now, E; =
i=1

U E., where the E. are disjoint. Hence xp, = > XE.. Hence
e;=1 and e#e¢g e;=1 and e#e¢g

m m
p=2 ¢ > XE. = 2 > XE.-

i+1 ;=1 and e#eg e#ep i=1 and ¢;=1

m
Call > ¢ as c(e). We now have a disjoint partition. Hence, by definition,

i=1,e;=1

[odu=Y couEn
X

eFeg

=>( ci)u(Ee)
e#eg i=1,6;=1

= Zci M(Ee)
i=1 E,;:l

So we have proved that the definition holds even when FE; are not disjoint. If

¢ =3 a;xa, and E C X, then [¢dp = ) a;u(A; N E). This can be shown to
i=1 E i=1

be equal to [ ¢x g du.
X
Now, let f > 0 be a measurable function. Let E C X. Define [ fdu =
E
sup J ¢ dp. Tt can be seen that the two definitions of integration coincide

¢ simple, 0<¢<f E
for simple functions.

Proposition 5.1. Let E C X. Then

(1)0§f§g=>gfdu§£gdu-

(2) ACB,f>0= [ fdu< [ fdu.

(3) f20,0§C<OOA:>fcfc§L:cffdu.
(4) F=0omE= [fdu )

(5) (E) = 0.5 0= [ fdu =0,
(@gfdu:){fmdu-

Proposition 5.2. (1) Let ¢ > 0 be simple. Define v(E) = [¢du, E € S.
B

Then v is a measure on S.

(2) If ¢4 > 0 are simple functions, then [(¢p+¢)du= [Pdu+ [ dpu.
X X X
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Proof. (1) It is clear that v > 0 and v(0)) = 0. We need only prove countable
additivity. Let E = |J E;, disjoint union. Let ¢ = > a;x4,. Then
= -

i= i=1

(2) Let ¢ = > aixa, and ¢ = ) BxB,. Let E;; = A; N Bj. Then
: =

=1

/ (64 ) du = (s + By)u(Esy)

E,;J‘
/¢du+/wdu.
E,;j E,;j

Since X is the disjoint union of sets of the form E;;, the result follows from

(1)

O

Theorem 5.3 (Lebesgue Monotone Convergence). Let {f,} be a sequence of non-
zero measurable functions such that

(1) 0< fi(z) < fa(z) < -+ Vo
(2) fn — f pointwise almost everywhere.

Then [ fndp— [ fdp.
X X

Proof. Since f, < f Vn, by (1) of Proposition 5.1, [ fodu < [ fdu Vn. Let
X X
a = sup [ fpdp. Then a < [ fdp. Now, let ¢ be a simple function such that
no X X

0<¢<f. Let 0 < c < 1. Define E,, = {z: fu(x) > cp(x)}. Then E; C Eo C ---.
If f(z) =0, then ¢(x) =0 =z € Ey. If f(x) > 0, then cp(z) < f(z). Since

fn(x) = f(x),3n such that cPp(x) < frn(x) < f(z). Hence x € E,. So X = |J E,.
n=1
Now [ fodp > [ fodp > ¢ [ ¢dp = cv(E,). where v is a measure as defined
X E, En
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n—oo

in Proposition 5.2. Hence o > ¢ lim v(E,) = ev(X) = ¢ [ ¢dp. Since this is
X
true for every simple function ¢ such that 0 < ¢ < f, we get o > ¢ [ fdu. As

X
c— oo, > [ fdp. Hence lim [ fodu= sup [ frodu= [ fdu. O
X N x no X b'e

118

Proposition 5.4. Let f,, > 0 be measurable. Then f(z) = fn(z) is measurable

n=1

and non-negative. Further, ffduf Z [ fndp.

n=1X

Proof. Let ¢L 7 f1,0 < ¢l simple, and ¢2 7 fo,0 < ¢2, simple. Then ¢} + ¢2
f1+ f2. Since f(¢i+¢i) dp = f ¢y, dpu+ f 2 dp, we get f(f1 + f2)dp = [ frdu+
s

ffgdu By induction, f fi+- o+ fn)du= fozdu Let g, = Z Then g, >0
1=1X

and g, /' f. By the monotone convergence theorem, f fdu= Z [ fidp. O
1=1X

Example 5.5. Let X = N,§ = P(N) and p be the counting measure. Let E =
{ni, -+ ,ni} be a ﬁnite set. Let f: X - Rabea non negative function. It is

then a sequence. f = Z f(ni)X{n,3- Then ffd,u = Z f(n;). Suppose f > 0 on
N. Then we can thlnk of fm=r1{1--- n} Then fn  f. By the monotone

convergence theorem,
[ an=3" s
X n=1

Example 5.6. Fix xg € X. Let

5 (E)— 1, ,xp e W
o B 0,:)30¢E

n
Let ¢ = Y a;xE,;, Fi disjoint. Then x( belongs to at most one E;. In this case,
i=1

f¢dﬂ = Qy, i'e'a f ¢d/’[' = (b(ﬂ?o)
X X

For f > 0, consider a sequence of simple functions {¢, } that increase to f. Then

Jfdp=lim [¢,du= lim ¢,(xo) = f(0).
X X

Example 5.7. Let {a;;} be a double sequence of non-negative numbers. Then
oo oo o0 o0
9IS )
i=1 j=1 j=11i=1

Let X = N,§ = P(N) and p be the counting measure. Let f;(j) = a;; and
f=>2, fi- By Proposition 5.4,

/fdﬂ Z/fzdﬂ

1= 1X
That is,

fjf Z;/fzdu

Jj=1
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Hence
oo oo oo oo
DD =)0 fil)
j=1i=1 i=1 j=1
1
Example 5.8. Consider I = f sin ”” dz. Taking the transformation y = sin™! z,
0

2
we get I = 7.

Now, the Taylor expansion of sin~'z = z + %%3 + %—2“"—; + %z—; + .-+ By
Proposition 5.4, we get
1
I — / Z Qn—l / .’L'2n+1
Vi 2n 2n+1 ,/1_x2
0
“(2n—-1 1 2n-2n—1)---2
_1+Z n—1) ( )
2n 2n+1(2n+1)-(2n—-1)---3
o (2n+1)2

Hence % Z (2n+1 IS = Z then we get S =

Theorem 5.9 (Fatou’s Lemma). Let f,, > 0 be a sequence of measurable functions.
Then

/( lim inf fn,)dp < liminf | f,dp.
X X

n—oo n— oo

Proof. Let gix(x) = Z1£1£ fi(x). Then g > 0 and kli_)n;ogk = 1in}l inff,. By the

Monotone convergence theorem, we get

/( lim inf f,)dp = lim /gk dp.
n—oo
b

n— o0
X
But
< 1 ; .
/gkdu_ 3§£ /fzdu
X X
Hence the result follows. O

Example 5.10. Strict inequality can occur in Fatou’s lemma. Let X = R, u be
the Lebesgue measure. Let f, = X[n,n+1]- Then 1i_>m fa(x) = 0Vx € R, but

J fndp=1Vn.
X

Proposition 5.11. Let f > 0 be measurable. Define

:/f@.
E

Then v is a measure. Further, if g > 0,

/ng=/fgdu-
X

X

The notation used is dv = fdu, or g; =f.
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Proof. Clearly, v > 0 and v(f)) = 0. Suppose E = |J F; disjoint union. Then
i=1

=

v(E) = [ fdu= [ fxedp. Now, xg = > xg,. Hence
E X i=1
/fXEd,U /ZfXEl dp
X x =1

Next, let g = xg. Then

Il
—
kﬁ
IS
=

X
=X/fg ds.

By linearity, the above also holds for simple functions, and by the Monotone con-
vergence theorem, it holds for all positive measurable functions. O

Example 5.12. Let f > 0 and [ fdu = 0. Then f = 0 almost everywhere. Let
X
E,={x: f(z) > 1}, Then E = {z : f(z) > 0} = |J E,. Now 0 = [ fdu >
n=1 X

[ fadp > Lu(E,). Hence pu(E,) = 0V¥n = u(E) = 0.
E,

Definition 5.13. A function f is said to be integrable if [ |f|dy < co. A real-
X

valued f can be written as f+— f~, where f*, f~ > 0. Hence we define the integral

of f as follows:
/fduzfﬁdu—/f*du.
X X X

Suppose f is a complex valued function. Then f = u + iv, where u, v are real-
valued functions. Then [|fldp < oo <= [|uldp < oo and [ |v]dp < oo.
X X X

Define
/fdu:/udu-l—i/vd,u.
X

X X
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Theorem 5.14. Let f,g be complex integrable functions and o, € C. Then
af + Bg is integrable and

/af+ﬁgdu=a/fdﬂ+ﬁ/gdu~
X X

X

Proof. |af + Bg| < |a||f| + 18]lg] = af + Bg is integrable. It suffices to show the
following:

(1) [(f+9)du=[fdu+ [gduV¥f,g real
X X X

(2) Jafdp=ca fduVa e C.
X X

Let f,g be real valued and h = f +¢g. Then ht —h™ = f* — f~ 4+ g+ — ¢g—. That
is, W\" +f~4+¢g~ =h™ + fT + g7, where each term is non-negative. Hence,

/h+du+/f‘du+/g_du=/h_du+/f+du+/9+dﬂ~
X X X X X X

That is,

[rran= [1mau=[ran= [ £ aus [gtau- [o

X X X X X X
as required. Next, let & > 0. Then [afdu = [(af)T — (af) " du = [aftdu—

X X X
Jaf~dp=o(f ffdu— [ f~dp)=a [ fdpu
X X X X

Now, —f = f~ — f*. Hence [ —fdu= [f~du— [frdu=— [ fdpu.
X X X X

/ifd,u:/i(u—I-iv)du
X X
z/iu—vdu
/vd,quz/udu
X
/udu+z/vdu
X

:i)Zfdu.

Theorem 5.15. | [ fdu| < [|f]du.
X X

Finally,

Proof. Let a = [ fdu. Then |ale?® = q, for some 6 € [0,27]. That is,
X

[ ran = [ pau= [ san (6)
X

X X



32 NOTES ON MEASURE THEORY

Let g = e~ f = u+4v. But by (6), we get [gdu = [edp. Also, u < |u| < |g| =
X X
|f|- Hence | [ fdul < [ |f|dp. O
X X

Theorem 5.16 (Dominated Convergence Theorem). Let f, — f almost every-
where and suppose |fn| < g almost everywhere, where g is an integrable function.
Then

lzm /|fn fldu=0.

Hence,

lim. nw /Nu

Proof. || fu| < g¥n = |f| < g. Hence |f, — f| < 2g. Thus, 29 — |f, — f| > 0. By
Fatou’s lemma,

/ lim (297|fn7f|d:u§ hminf?g*‘fn*f‘dﬂ“
n—oo n—oo

X
/@@ghgﬁ/MW—/m—ﬂ@

X

Hence

/%wfmmw/mlﬂw

n—00
X

This implies that lim sup f |fn — fldu <0, since g is integrable. Hence we get

n—oo
0< liminf/|fn—f|d,u§ lim sup /|fn—f|du§0.
n—0oo n—»00
b'e X

Hence

hm /|fn fldp=0.

Example 5.17. Consider N, P(N) and the counting measure.

(1) Let

Ll 1<k<n
nk: n’ B o
fn(k) {07k>n

Then f, — 0 uniformly, but [ f, dp = 1Vn. But in this case, f,s are not

N
bounded by an integrable function.

L1<k<
Let f(k) = g%ﬁ;n<—” Then f, — f, where f(k) = LVk, which is not

integrable. However, by Montonoce convergence theorem, f, ~ f.

Theorem 5.18. Let f be a bounded function on [a,b]. Then
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(1) If f is Riemann integrable, then it is Lebesque integrable, and

/f dw*/fdu

[a,b]

where p is the Lebesque measure.
(2) f is Riemann integrable iff f is continuous almost everywhere.

Proof. Let {Py} be a sequence of partitions of [a,b] such that the mesh AP, =

1I£1a<x |z — zk—1] — 0. Each Py is a refinement of Py. Let P, = {a =29 < z1 <
1

- < x, = b}. Define functions Uy, Lj as follows:

Uk(a) = Li(a) = f(a)

and
Uk () =
Li(z) =
ifx€zi_1,2;] and M; = sup f(xz)and m; = inf  f(x).
TE€[Ti—1,2i] r€[ms_1,24)

Now [ Updpu=U(P,f)and [ Liydu= L(P,f). Also,
[a,b] la,b]
Ui(z) 2 Us(x) =2 -+ 2 f(z) 2 -+ = La(x) = Li(x). (7)
Since f is bounded, we have f Uydp < co. Now, U, - U > f, Ly — L < f,
[a,b]
and by the dominated convergence theorem, all the functions in (7) are integrable.
Further, [ Uxdu— [ Udpand [ Lydp— [ Ldu. Since f is Riemann inte-
[a,b] [a,b] [a,b] [a,b]
b
grable, [ Uydu=U(Py, f)— [ f(z)dzas APy —0and [ Lydu= L(Py, f) —
[a,b] a [a,b]
b
[ f(z)dz as APy — 0. Hence

/f d;v—/Ud,u>/fdu>/Ld,u /f

[a,b] [a,b] [a,b]

Hence, [ fdu= ff(x) dz if f is Riemann integrable. Also, f = U = L almost
[a,b] a

everywhere. By further throwing away the partition points, f is continuous almost

everywhere.

Conversely, if f is continuous almost everywhere, we get f = U = L at all
those points. f continuous at a point z implies that for € > 0,35 > 0 such that
lv — 2] < 6 = |f(z) = f(2)] < §. Choose k such that APk < §. Take x a
point that is not a partition point of P, = {a = z§ < xl < - < akn = b},
Then z € [z¥_|,2F] for some i. Now, for each z € [z ,,2¥],|f(z) — f(2)| < .
Hence [M; — f(z)| < § and |m; — f(z)] < §. So, |M; —m;| < e. This, Uy, Ly
tend to each other and U = L = f. If f = U = L, then by the dominated
convergence theorem, [ Updup — [ fdp and [ Lydp — [ fdp. Hence,

[a,b] la,b] la,b] la,b]
| J Ukdp— [ Lidu| — 0. O
[a,b] [a,b]
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Example 5.19. Let X = [0,00) with Lebesgue measure. Let f(z) = 2% Then
the Riemann integral of f exists and is finite (equal to 7). However, f is not
I~ 77,7r+7r

Lebesgue integrable, i.e., f S22 | d = oo. f S22 dg > > [ [#22|dz. On

n=1nr+%
[T71}711'—|—§,n7r+g], |sinz| > % and z = |z| < nn+F = (2n+1)F, hence
us

2
\x| = 7r(2n+1

Slnx > ™ >
/' Z_: = 2n—|—1 172 222n+1 o
) =

n=1

Example 5.20. (1) Let X = (0,1) and f(z) = L. Let

7z
1
fn(x):{() 0<z<

T7E<x<1

Then {f,} increases to f. By the monotone convergence theorem,
1

/ f(x)de = lim [ fo(z)dx
0

n—oo

0
11
li —d
i [
1

n

= lim [2V/a]}
n—o0 n
= lim [2 — l]
n—00 n
=2.
(2) Let X =(1,00) and f(z) = ﬁ Let

fo(a) = {\/15, z € (1,n)

0, z € [n,0)

Then {f,} increases to f. Hence f 75 do = hm f —=dx = h_)m [2/z]} =
nl;rr;o [2y/n—2] =

Example 5.21. Let f : R — R be integrable and t € R be fixed. Then
o0 o0
/f(x +t)dx = /f(a;) dx.

lLLz+telE
0,z+t¢F

[ e+ tde=p(E 1) = uE) = [ fa)do

By linearity, the result is true for simple functions, by the monotone convergence
theorem for non-negative functions, and then by linearity for complex valued func-
tions.

First, let f = xg. Then

= XE—t(I)

f(a:+t){

Hence
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Example 5.22. Let f:[0,1] x [0,1] — R. Suppose
(1) f is measurable with respect to = for each fixed t.
(2) |f(z,t)| < g(x), where g is integrable.
(3) f(z,t) = ¢(x) as t — 0.

Then

1 1
%g% /f(a:,t) dx:/qﬁ(m) dx.
0 0

Proof. Let t,, — 0. Let ¢, (z) = f(x,t,). Then phi,(z) — ¢(z), and |¢(x)| < g(x),
1 1

g integrable. By the dominated convergence theorem, [ ¢,(z)dz — [ ¢(z)dz. O
0 0
Example 5.23. Let f:[0,1] x [0,1] — R. Suppose

is measurable with respect to x for each fixed t¢.
is continuous with respect to t for each fixed x.
(z,t)| < g(x), where g is integrable.

(z,t) = ¢(x) as t — 0.

e s

Further, suppose %{(w,t) exists for all z,¢ € [0,1], is continuous with respect to

, 1
t and |%{($7t)| < M. Let h(t) = {f(x,t) dz. Then h is differentiable and 42 =

%(x,t) dz. That is,

Ot— =

1

jt/f(x,t)dac:/la
0

0

|

(z,t) dx.

o))

t

Proof, MUATI=A®) _ | etdn) fled) gy _ [ Oflatson

dx, by the mean value the-

0 0
orem. Now, W imalN %{(m,t), and \W| < M. By the dominated
1
convergence theorem, as 7,, — 0, we get h(tJrT;‘)*h(t) = [ 8fgf’t) dzx. O
’ 0

6. DIFFERENTIATION

Theorem 6.1. Let f : [a,b] — R be monotonically increasing. Then f is differen-
tiable almost everywhere.

Theorem 6.2. Let f be monotonically increasing on [a,b]. Then

b
/ (6 dt < £(b) — f(a).

Before the proof, we do the following exercise.
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Exercise 6.3. Let f: R — R, ¢ fixed. Then

b b4t
/fw+w¢m:/f@my
a-+t
First, letf Xg- ¢ € [a,bl,x+t € E=z+t € lat+t,b+t],x+t € [a+t,b+t|NE.
b+t
Hencef;ma:—!—t)dx— WENa+tb+t)= | xpde.
a a+t

Proof. By Theorem 6.1, f is differentiable almost everywhere. Define

(@) { %ir% w, if the limit exists
g(z) ={ h=

0, otherwise

Then g = f’ almost everywhere. Let g, = n(f(z + fracln) — f(x)). Then g, — f’
almost everywhere and g, > 0. By Fatou’s lemma,

b b
/ lim inf g, dt < lim inf /gn(t) dt.

n— oo n—oo
a

That is,

b
/f t)dt < lim 1nf/ n(t) dt.
n— oo

Now,

b+1

=n( /f dt—/f t) dt)
a+1
b+1 at+i

:+% +% b

/ dt+/f dt—/ () db) /f()dt)

b a a

b+1 a+i

n( [ foyde— | f)do

e ]

a+%
—1®)-n [ s
a+l a+%

Hence ff t)dt < f(b) — lim sup n f f(t)dt. Now, [ f(t)dt> L f(a). Hence
b
[ f'(t)ydt < f(b) — lim sup n- ;- f(a) = f(b) = f(a). O

a n— 00
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Remark 6.4. Strict inequality can hold in Theorem 6.2 as in the case of the Cantor
function.

Definition 6.5. Let f : [a,0] > R,and P ={a =29 <21 < --- < z, = b} be
a partition of [a,b]. Let ¢(P, f) = Zn: |f(x;) — f(xi=1)| and T2(f) = sup t(P, f).
TP (f) is called the total variation z)?lf over [a,b], and f is said to be 07; bounded

variation over [a, b] if T2(f) < oo.

Example 6.6. (1) If f is Lipschitz continuous, it is of bounded variation.
(2) Any monotonic function is of bounded variation with T?(f) = f(b) — f(a)

or f(a) — f(b).
(3) Any continuously differentiable function or differentiable function with bounded
derivative is of bounded variation.

Example 6.7. Let

22sin L. 0<zx<1
‘r: (lj’ — —
(@) {O’x_o

Note that f’ is not bounded and blows up near 0. Claim: f is not of bounded

variation. Let P = {0,1} U { 7ﬂ(2£+1) :0 <k <n}. For each k,
2 (k4 Dr 2 _(2k—1)r
|f($k)_f($k)‘—|ﬁ(2k+1) sin ~—— ST T \
2 2

k) Trer—D
_2(2k71+2k+1)
o (2k—1)(2k+ 1)
2 4k

m4k? -1

8 k

> -

— o 4k2

_ 2

Tk

n n
Hence Y |f(zr) — f(zk—1)| > 2 Y 1 — 00 as n — oo.
k=1 k=1

Proposition 6.8. (1) If f is of bounded variation, then it is bounded.
(2) Let If f,g are of bounded variation, the so are f + g and fg.

Proof. (1) Let ¢ € [a,b], and P = {a,t,b}. Then |f(t) — f(a)| +|f(b) — f(t)] <
T (f). Hence |f(z)| < [f(a)] + T7(f) < oo, VL.
(2) f+ g is of bounded variation by the triangular inequality. Consider fg.
[fa(xi) = fo(@ima)| < [f (@) (9(xi) — g(zim1))| + [(f(2i) — fzi-1))g(ziz1)]
< fllsolg(@s) — g(zi—1)l + llglloo] f(@s) — f(@iz1)]

O

For r € RT, let r* = max {r,0} and = = —min {r,0}. Then r = 7" —r~ and
Ir|=rt+r".
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For a partition P, Let

and
n

N(P,f) =3 (f(:) = flwin) ™
Then P(P,f)+ N(P,f) = t(P,f), and P(P,f) — N(P,f) = f(b) — f(a). Let
PY(f) = sup P(P, f) and N2(f) = sup N(P, f).

Proposition 6.9. Let f be of bounded variation on [a,b]. Then
T;(f) = P;(f) + N3(f)
and
F(0) = fla) = Py(f) = No(f)-
Proof. Fix a partition P. Then P? — N? = f(b) — f(a). Hence
P =N+ (f(b) - f(a)) < No(f) + £(b) = f(a).

Hence

P2(f) < NJ(f)+ f(b) = f(a).
Similarly,

NJ(f) = PU(f) < f(a) = F(b).
Hence

Py(f) = Ng(f) = f(b) = f(a).

Now, t(P, f) = P(P, f) + N(P, f) < P’(f) + N2(f). Hence
T2 (f) < PY(f) + NJ(f).-

Now,
T2 (f) = H(P, f)

=P(P,f)+ N(P,f)

=P(P, f)+ (P(P,f) = (f(b) = f(a)))

=2P(P, f) = (f(b) = f(a))

=2P(P, f) — (P;(f) = N;(f)).
Taking the supremum over all partitions P, we get

T(f) > 2P2(f) - PL(J) + NU(J)

= P(f) + Na(f)-

O

Consider the interval [a, b] and z,y € (a,b) such that < y. Then [a, ], [a,
[a,b] and T (f) < TY(f), Py (f) < PY(f), and N7 (f) < NJ(f). Now, f(a)—f
Py(f) = NG (f). Hence f(z) = (P7(f)+ f(a)) = Ng(f), where both (F;(f) + f(a))

and NZ(f) are monotonic. Hence we have the following theorem:

yl €
a) =

Theorem 6.10. f is of bounded variation on [a,b] iff f is the difference of two
mononically increasing functions.

Corollary 6.11. If f is of bounded variation, then [’ exists almost everywhere.
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Proposition 6.12. If f is of bounded variation, then

b
/If’ld:c < TV()).

If f is continuously differentiable, then

b
/|f’|dx )

Proof. We have f(z) — f(a) = Py(f) — Ni(f). Hence f'(z) = Py(f) = NOf".
Hence |f'(x)| = |PZ(f)'| + |INZ()f'|. But as P¥(f),N*(f) are increasing, their
derivatives are non-negative. Hence |f(z)'| < P¥(f)' + NX(f)'. Hence |f(x)| <

T*(f)'. So we have
b

/b #lde < [(12) do

a

Next, let f be continuously differentiable. Let P be any partition. Then
T4
fa) = flai) = [ £ de
and
Zq
£ = faia)| < [ 17/0)] .
Zi

Summing over i, we get
b

HP.f) = 3 Ifw) = flai)l < [ 1£(0)]at

a

Taking supremum over all partitions, we get

b
7)< [ 170) .
O
6.1. Vector Valued Maps. Let f : [a,b] = RY, f = (f1, fo, -+, fn) and | f(z)| =

N n
(S 1i(@)P)E. Tet P be a partition of [a,8] and (P, f) = 35 |f(ze) — flzi )l
i=1 i=1
Then f is of bounded variation iff sup (P, f) < occ.
P

Lemma 6.13. Let f: [a,b] — RY. Then

b b
[ tasl < [ 151d
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b b
Proof. Let y; = ffidx- Then ffdm =y = (y1," " ,yn). |ffd9ﬂ|2 = [y]* =

Z\%IQ Zyszzdwffzyzfz dfv<f|y\|f|dﬂf—|y\f\f|dx If y = 0, the

a 1=1

proof is clear Else by dividing, we get

b b
[ rasl < [ 111

O

Theorem 6.14. If f : [a,b] — RY is of bounded variation and continuously differ-
entiable, then

b

T(f) = / ()] d.

a

Proof. Consider any partition P. Then Y |f(z;) — f(zi—1) Z f (t)dt| <
i=1 =
b
Z f If/ ()| dt = f|f )| dt. Hence, T2(f) < [|f/(¢)|dt.
i=1xz; 1 a

Since f is continuously differentiable on [a, b], f’ is uniformly continuous on [a, b].
Hence for € > 0,30 > 0 such that |z —y| < d = |f(z) — f(y)] < e. Choose P =
{a =x9 < z1 <--+ <z, = b} to be a partition such that Vi, Ax; = z; — z;—1 < 9.
Let t € [w;_1,%;]. Then |f/(¢)] < |f'(z;)] + e. Hence

X
/ PO dt < |f ()| Az + e,

Ti—1
That is,

7

X
/ F(0)] dt — eAa; < | f'(xs)| Ay

Ti—1

< / (b dt] + | / F() — 1) dt]
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Hence
b
/ If'(t)| dt — e(b—a) <T(P, f) + e(b—a).
Thus, ’
b
/|f’(t)| dt <T(P,f)+2e(b—a) <TP(f) + 2e(b— a).
Hence, fb|f’(t)\ dt < TP(f). O

Let v be a curve in R2. That is, v : [0,1] — R2. v is a rectifiable arc iff 7 is of
bounded variation and the length of v is Tg (7). If 7y is a continuously differentiable

1
function, then its length= [ |7/(¢)| dt.
0

Let y(t) = (z(t),y(t)). Then v'(t) = (2/(t),y'(t)) and |¥/(t)] = /22 +y2.
1 1
Hence length of v = T2 +y?dt = 1+ (%)2 dz
I [+ (@

Proposition 6.15. Let f > 0 be integrable. Then given ¢ > 0,35 > 0 such that if
W(E) <4, then [ fdu <e.
E

Proof. (1) First, assume f is bounded. THen 3K > 0 such that |f| < K. Then
b[fd,u < Kp(E). So, in this case, we choose § < .

(2) In the general case, Let

fle) = {f<x>, f@)<n

n, f(x) >n

Then f, is bounded, f, < f and f,, /' f. By the monotonone convergence
theorem, [ f, — [ f. So given € > 0, choose N such that Vn > N, [ f —
X

[ fn < 5. Consider the corresponding fy. By the bounded case, 36 > 0
X
such that u(F) <= [ fydu < §. Hence, if u(E) <4,

E

E/fdu—E/f—deu+E/deu

<Zf—deM+E/deu
<€

Proposition 6.16. Let f : R — R be continuous. Then
x+h
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Proof. Let € > 0 and x € R. Then 3§ > 0 such that [t — x| < d = |f(t) — f(x) <e.
x+h x+h

5 [ rwa-s@i=1g [ 10 - @

x+h

<i [ -r@la
1

IN

EEI’L,

by choosing h small enough. O

x

Proposition 6.17. Let f be integrable on [a,b]. Define F(x) = [ f(t)dt. Then F

a
is a uniformly continuous function of bounded variation.

y y
Proof. Let < y. Then |F(z) — F(y)| = | [ f(t)dt| < [ |f(t)|dt. By Proposition

x

y
6.15, given € > 0,36 > 0 such that [z —y| < 6 = [|f(¢)|dt < e. Hence F is

x
uniformly continuous. Next, let P be a partition of [a,b]. THen

n

S 1F@) - Pl =301 [ foa

i=1

< |f (@) dt

b

— [1rwat

a

Hence F' is of bounded variation. O

Proposition 6.18. Let f be integrable on [a,b]. Assume thatVz € [a,b], [ f(t)dt =

0. Then f =0 almost everywhere. ‘

Proof. Let E4 = {x: f(z) > 0}. We will show that u(E;) = 0. Similarly, we show
that E_ = {z : f(z) < 0} has measure zero. Assume p(FE;) > 0. Then IF closed,
FCE, and pu(F) > 0. Let U = (a,b) \ F. Then U is open and U N F = {).

Also,
b
[twa= [+ [ s
a U a
Hence
[rwae=- [ s 2o
U F
Let U = G [an,by), a disjoint union. Let g, = f | [Lj [ai,b;). Then |gn| < |f]s
n=1 i=1

f integrable and g, — f | U. By the dominated convergence theorem, [ g, du —
U
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J fdu. Now, 0 # [ f(t)dt = ioj bfn’f(t) dt. Hence In such that bfn’f(t) dt # 0.
U U

n=la, an

bn an
That is, [ f(t)dt — [ f(t)dt # 0, a contradiction. O

Proposition 6.19. Let f be a bounded measurable function on [a,b] and let F(z) =
[ f(t)dt. Then F' = f almost everywhere.

Proof. By Proposition 6.17, F is of bounded variation. Hence F’ exists almost
everywhere. Define
z+L
1
fo(x) =n(F(z+ E) —F(z))=n / ft)dt.

Suppse |f| < K. Then f| < K and f — F’ almost everywhere. By the dominated
convergence theorem, Ve € [a, ],

/ F'(t)dt = lim [ f,(t)dt

n—oo
=1 CFt 1 F(t))dt
= limn [ (F(t+-) = F(®)

ct+3 atg
= lim n( / F(t)dt — / F(t)dt)
= F(c) — F(a)

:/f(t)dt Ve € [a, b].
By Proposition 6.18, F’ = f almost everywhere. (]

Theorem 6.20. Suppose [ is integrable on [a,b] and F(z) =

8 —y

f(t)dt. Then

F" = f almost everywhere.

Proof. Assume without loss of generality that f > 0. Define
f(@), flz) <n
o) = (), f(z)
n, f(x) >0

T

Then f, 7 f and f — f, >0, f, bounded for all n. Let Gy,(z) = [(f — fu)(t) dt.
Then Vn, G,, is monotonically increasing and thus differentiable almgst everywhere.

By Proposition 6.1, ([ f,(t)dt)’ = f, almost everywhere. Now, F(z) = [7(f —

F)@) dt+ [ fu(t) dt = Gr()+ [ fu(t) dt. Hence, F' = G' + fo > fu¥n since G, is

positive. Hence F' > f. Now, F'(b) > be'(:r) dzx > fbf(x) dx = F(b)—F(a) = F(b),

a a
where the first inequality holds since F' is monotonically increasing due to the fact
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b b
that f > 0. Hence, equality holds and [ F'(z)dz = [ f(z)dz. But F/ — f > 0 =
F' = f almost everywhere. O

Definition 6.21 (Absolutely continuous). Suppose F' is a function such that given
€ > 0,36 > 0 such that 1f {(zk,yr)} is a disjoint collection of intervals such that

Z yr — xp < 6, then E |F(yr) — F(xr)| < e. Then F is said to be absolutely
=1

Contlnuous Any mdeﬁmte integral is absolutely continuous.

Proposition 6.22. If f is absolutely continuous, then f is of bounded variation.

Theorem 6.23. Suppose f is absolutely continuous and ' = 0 almost everywhere.
Then f is a constant.

Theorem 6.24. Suppose F' is absolutely continuous. Then

x

F(a) + /F/(t) dt.

a

Proof. F is of bounded variation and hence F' = F} — F5, where F; are monotonically

increasing.
b b
[1#1< [1F1+ 18
b b

~ [F+ [

< Fl(b) — Fl(a) + Fg(b) - FQ(CL)

= F(b) — F(a).
Hence F” is integrable. Let G(z f F'(t)dt. Then G’ = F’ almost everywhere.

Also, F' — G is absoltuely contlnuous. By Theorem 6.23 F = G + c. Hence
fF’ dt + constant . Take x = a to get F(z fF/ )dt + F(a). O

7. PRODUCT SPACES

8. LP SPACES



