

NOTES ON MEASURE THEORY

ABSTRACT. Notes on the Measure Theory course taken at IITM by Prof. S. Kesavan

1. RIEMANN INTEGRATION

Let $[a, b]$ be a closed interval in \mathbb{R} . Let \mathcal{R} be the class of Riemann integrable functions on $[a, b]$.

Consider a partition of the interval $P = \{a = x_1, x_2, \dots, x_n = b\}$. Let $t_i \in [x_{i-1}, x_i]$ and $S(P, f) = \sum_{i=1}^n f(t_i) \Delta x_i$. Let $\mu(P) = \max_{i \in \{1, \dots, n\}} \Delta x_i$.

We say that $\lim_{\mu(P) \rightarrow 0} S(P, f) = A$ if $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall P$ such that $\mu(P) < \delta$, and for all choices of $t_i \in [x_{i-1}, x_i], 1 \leq i \leq n$, $|S(P, f) - A| < \epsilon$.

Theorem 1.1. (1) If $\lim_{\mu(P) \rightarrow 0} S(P, f) = A$, then $f \in \mathcal{R}$ and $\int_a^b f dx = A$.
(2) If f is continuous, then $f \in \mathcal{R}$.
(3) If $f \in \mathcal{R}$, then $\lim_{\mu(P) \rightarrow 0} S(P, f) = \int_a^b f dx$.

Proof. (1) Let $\epsilon > 0$. Then $\exists \delta > 0$ such that

$$\mu(P) < \delta \implies A - \frac{\epsilon}{2} < S(P, f) < A + \frac{\epsilon}{2}.$$

Choose such a partition. Letting t_i vary, moving towards the points of infimum and supremum, we get

$$\begin{aligned} A - \frac{\epsilon}{2} &\leq L(P, f) \leq U(P, f) \leq A + \frac{\epsilon}{2} \\ \implies U - L &\leq \epsilon \implies f \in \mathcal{R}. \end{aligned}$$

Also, $L(P, f) \leq \int_a^b f dx \leq U(P, f) \implies \int_a^b f dx = A$.

(2) If f is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$. Hence for $\epsilon > 0, \exists \delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$. Hence, if $\mu(P) < \delta$, then $M_i - m_i < \epsilon$.

$$\implies U(P, f) - L(P, f) < \epsilon(b - a).$$

(3) Let $\epsilon > 0$ and $M = \sup_{x \in [a, b]} |f(x)|$. $f \in \mathcal{R} \implies \exists P^*$ such that $U(P^*, f) < \int_a^b f dx + \frac{\epsilon}{4}$.

Assume that P^* has n subintervals and choose $\delta_1 < \frac{\epsilon}{4Mn}$. Choose P such that $\mu(P) < \delta_1$. Now $U(P, f)$ can be written as two sums, one that depends on the contributions of subintervals containing nodes of P^* and those that do not contain nodes of P^* . The first sum is less than $\frac{M\epsilon(n-1)}{4Mn}$, while the second sum is less than $U(P^*, f)$. Hence $U(P, f) < \frac{\epsilon}{2} + \int_a^b f dx$. Similarly, find $\delta_2 > 0$ such that $\mu(P) < \delta_2 \implies L(P, f) >$

$$\int_a^b f dx - \frac{\epsilon}{2}. \text{ Let } \delta = \min(\delta_1, \delta_2). \implies \int_a^b f dx - \frac{\epsilon}{2} < L \leq S \leq U < \int_a^b f dx + \frac{\epsilon}{2}.$$

□

Example 1.2. Let $r_1, r_2, \dots, r_n, \dots$ be an enumeration of the rationals in $[a, b]$. Let

$$f_n(x) = \begin{cases} 1, & x = r_1, \dots, r_n, \\ 0, & \text{otherwise.} \end{cases}$$

Then for a partition P with n subintervals, $L(P, f) = 0$ and $U(P, f) < n\mu(P)$. Taking $\mu(P)$ as small as required, we get that $f_n \in \mathcal{R}$ and $\int_a^b f_n dx = 0$.

Example 1.3. Let

$$f(x) = \begin{cases} 1, & x \text{ is rational,} \\ 0, & \text{otherwise.} \end{cases}$$

Then for every partition P , $L(P, f) = 0$ and $U(P, f) = b - a \neq 0$. Hence $f \notin \mathcal{R}$. We observe that the f_n of the previous example converge pointwise to f .

This is why the need for a different kind of integration arises. Consider a step function $f = \sum_{i=1}^n \alpha_i \chi_{I_i}$, where I_i are intervals. Then we define $\int_a^b f = \sum_{i=1}^n \alpha_i l(I_i)$.

We note that the integral is also equal to

$$\sum_{i=1}^n \alpha_i (\text{total length of intervals where } f = \alpha_i).$$

Next, we ask whether the intervals I_i can be replaced by arbitrary sets E_i . How do we talk about the ‘length’ of an arbitrary set? Hence, the need for measures arises.

2. MEASURES

Let X be a non-empty set and $\mathcal{P}(X)$ denote the power set of X .

Definition 2.1. A **ring** \mathcal{R} is a subset of $\mathcal{P}(X)$ which is closed under unions and differences. That is,

$$E, F \in \mathcal{R} \implies E \cup F, E \setminus F \in \mathcal{R}.$$

Remark 2.2. Let \mathcal{R} be a ring. Then

- (1) $\emptyset \in \mathcal{R}$.
- (2) $E, F \in \mathcal{R} \implies E \cap F = E \setminus (E \setminus F) \in \mathcal{R}$.
- (3) $E \Delta F = (E \setminus F) \cup (F \setminus E) \in \mathcal{R}$.

Hence a ring contains the empty set, is closed under intersections and symmetric differences. It is also clear that a ring is closed under finite unions and intersections.

- (4) If \mathcal{R} is closed under unions and finite differences, then it is a ring since $E \setminus F = (E \cup F) \Delta F$.
- (5) If \mathcal{R} is closed under intersections and finite differences, then it is a ring since $E \cup F = (E \Delta F) \Delta (E \cap F)$.

Example 2.3. (1) $\mathcal{P}(X)$ is trivially a ring.

- (2) $\mathcal{R} = \{\emptyset\}$ is a ring.
- (3) Let $X = \mathbb{Z}$ and $\mathcal{R} = \{A \subset \mathbb{Z} : A \text{ is finite or } \emptyset\}$.
- (4) Let $X = \mathbb{R}$ and $\mathcal{P} = \{[a, b] : a, b \in \mathbb{R}, a \leq b\}$ and $\mathcal{R} = \text{set of finite unions of elements of } \mathcal{P}$.

Definition 2.4. A ring \mathcal{R} is said to be an algebra if $X \in \mathcal{R}$.

Hence an algebra is closed under unions and complementations. Conversely, if \mathcal{R} is closed under unions and complementations, it is an algebra, since

$$X = E \cup E^c, E \setminus F = E \cap F^c = (E^c \cup F^c)^c.$$

Let $\mathcal{E} \subseteq \mathcal{P}(X)$. Then $\mathcal{P}(X)$ is a ring containing \mathcal{E} . The intersection of rings is again a ring. Hence, the intersection of all rings containing \mathcal{E} is the smallest ring containing \mathcal{E} and is called the ring generated by \mathcal{E} . We denote it by $\mathcal{R}(\mathcal{E})$.

Let $\mathcal{R}' = \{\text{all subsets which are covered by a finite number of members of } \mathcal{E}\}$. Then $\mathcal{E} \subseteq \mathcal{R}'$ and $E_1, E_2 \in \mathcal{R}' \implies E_1 \cup E_2, E_1 \setminus E_2 \in \mathcal{R}'$. Hence \mathcal{R}' is a ring containing \mathcal{E} . Hence, $\mathcal{R}(\mathcal{E}) \subseteq \mathcal{R}'$. This shows that every member of the ring generated by \mathcal{E} can be covered by finitely many members of \mathcal{E} .

Definition 2.5. A σ -ring \mathcal{S} is a collection of subsets of X which is closed under differences and countable unions. That is,

- (1) $E, F \in \mathcal{S} \implies E \setminus F \in \mathcal{S}$.
- (2) $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{S} \implies \bigcup_{i=1}^{\infty} E_i \in \mathcal{S}$.

Let $E = \bigcup_{i=1}^{\infty} E_i$. Then $\bigcap_{i=1}^{\infty} = E \setminus (\bigcup_{i=1}^{\infty} (E \setminus E_i)) \in \mathcal{S}$.

As before, for $\mathcal{E} \subseteq \mathcal{P}(X)$, one can talk of the σ -ring generated by \mathcal{E} and denote it by $\mathcal{S}(\mathcal{E})$.

Definition 2.6. \mathcal{S} is called a σ -algebra if it is a σ -ring such that $X \in \mathcal{S}$.

The above definition can be shown to be equivalent to \mathcal{S} being closed under countable unions and complementations.

Let (X, τ) be a topological space. Then $\mathcal{S}(\tau)$, the σ -ring generated by τ is actually a σ -algebra and is called the Borel σ -algebra generated by (X, τ) .

Let X be a non-empty set and \mathcal{R} a ring on X .

Definition 2.7. A measure μ on \mathcal{R} is an extended real-valued function such that:

- (1) $\mu(E) \geq 0 \forall E \in \mathcal{R}$
- (2) $\mu(\emptyset) = 0$
- (3) μ satisfies countable additivity, that is, if $\{E_i\}_{i=1}^{\infty}$ is a collection of mutually disjoint sets in \mathcal{R} and if $E = \bigcup_{i=1}^{\infty} E_i \in \mathcal{R}$, then $\mu(E) = \sum_{i=1}^{\infty} \mu(E_i)$.

Here, we need not worry about convergence of the series as μ is an **extended** real-valued function, and rearrangements do not affect the summation since each term is positive.

Remark 2.8. If we assume that there exists at least one $E \in \mathcal{R}$ such that $\mu(E) < \infty$, then (2) follows from (1) and (3), for

$$E = E \cup \emptyset \cup \emptyset \cup \dots$$

and hence

$$\mu(E) = \mu(E) + \mu(\emptyset) + \mu(\emptyset) + \dots$$

giving $\mu(\emptyset) = 0$ since $\mu(E)$ is finite.

Example 2.9. (1) Let $X \neq \emptyset$ and $\mathcal{R} = \mathcal{P}(X)$. For $E \subseteq X$, define

$$\mu(E) = \begin{cases} \text{number of elements in } E, & \text{if } E \text{ is finite,} \\ \infty, & \text{otherwise.} \end{cases}$$

(2) **Dirac measure:** $X \neq \emptyset, \mathcal{R} = \mathcal{P}(X)$. Fix $x_0 \in X$. Let

$$\delta_{x_0}(E) = \begin{cases} 1, & \text{if } x_0 \in E, \\ 0, & \text{otherwise.} \end{cases}$$

(3) $X \neq \emptyset, \mathcal{R}$ = the ring of finite subsets of X . Let $f : X \rightarrow \mathbb{R}$ be a non-negative function. Let $E = \{x_1, x_2, \dots, x_n\}$. Define $\mu(E) = \sum_{i=1}^n f(x_i)$.

Let X be a non-empty set, \mathcal{R} a ring and μ a measure on \mathcal{R} .

Proposition 2.10. (1) μ is monotone, i.e.,

$$E \subset F, E, F \in \mathcal{R} \implies \mu(E) \leq \mu(F).$$

(2) μ is subtractive, i.e.,

$$\mu(F \setminus E) = \mu(F) - \mu(E) \quad \forall E \subset F, E, F \in \mathcal{R}, \mu(E) < \infty.$$

Proof. (1) If $E \subset F$, then $F = E \cup (F \setminus E)$. Hence $\mu(F) = \mu(E) + \mu(F \setminus E)$.

Hence $\mu(E) \leq \mu(F)$.

(2) Further, if $\mu(E) < \infty$, then $\mu(F \setminus E) = \mu(F) - \mu(E)$.

□

Proposition 2.11. Let $E, E_i \in \mathcal{R}, \bigcup_{i=1}^{\infty} E_i \subset E$ and E_i disjoint. Then

$$\mu(E) \geq \sum_{i=1}^{\infty} \mu(E_i).$$

Proof. $\forall n, \bigcup_{i=1}^n E_i \subset E$. Hence $\mu(E) \geq \mu(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i) \forall n$. Hence $\mu(E) \geq \sum_{i=1}^{\infty} \mu(E_i)$. □

Proposition 2.12 (Continuity from below). Let $E_i \in \mathcal{R}, \{E_i\}$ be an increasing sequence. Let $E = \bigcup_{i=1}^{\infty} E_i \in \mathcal{R}$. Then $\mu(E) = \lim_{i \rightarrow \infty} \mu(E_i)$.

Proof. $\mu(\bigcup_{i=1}^{\infty} E_i) = \mu(\bigcup_{i=1}^{\infty} (E_i \setminus E_{i-1})) = \sum_{i=1}^{\infty} \mu(E_i \setminus E_{i-1}) = \lim_{n \rightarrow \infty} \sum_{i=1}^n \mu(E_i \setminus E_{i-1}) = \lim_{n \rightarrow \infty} \mu(\bigcup_{i=1}^n (E_i \setminus E_{i-1})) = \lim_{n \rightarrow \infty} \mu(E_n)$. □

Proposition 2.13. Let $\{E_i\}$ be a decreasing sequence in \mathcal{R} , $E = \bigcap_{i=1}^{\infty} E_i \in \mathcal{R}$. Suppose $\exists m \in \mathbb{N}$ such that $\mu(E_m) < \infty$. Then $\mu(E) = \lim_{n \rightarrow \infty} \mu(E_n)$.

Proof.

$$\begin{aligned}
\mu(E_m) < \infty &\implies \mu(E_n) < \infty \forall n \geq m. \\
\mu(E_m) - \mu(E) &= \mu(E_m) - \mu(\cap_{n \geq m} E_n) = \mu(E_m \setminus \cap_{n \geq m} E_n) \\
&= \mu(\cup_{n \geq m} (E_m \setminus E_n)) = \lim_{n \rightarrow \infty} \mu(E_m \setminus E_n) \\
&= \lim_{n \rightarrow \infty} (\mu(E_m) - \mu(E_n)) = \mu(E_m) - \lim_{n \rightarrow \infty} \mu(E_n).
\end{aligned}$$

Hence $\mu(E) = \lim_{n \rightarrow \infty} \mu(E_n)$. □

Example 2.14. Let $X = \mathbb{N}$, $\mathcal{R} = \mathcal{P}(\mathbb{N})$ and μ be the counting measure. Let $E_n = \{n, n+1, \dots\}$. Then $\mu(E_n) = \infty \forall n$, $\cap_{n=1}^{\infty} (E_n) = \emptyset$ and $\mu(\emptyset) = 0$. Hence the condition that $\mu(E_m) < \infty$ for some $m \in \mathbb{N}$ cannot be removed.

Definition 2.15. Let $X \neq \emptyset$, \mathcal{R} be a ring and μ a measure. $\mathcal{H}(\mathcal{R})$ is defined as the smallest hereditary σ -ring containing \mathcal{R} . That is, $\mathcal{H}(\mathcal{R})$ is a σ -ring containing \mathcal{R} , and if $E \in \mathcal{H}(\mathcal{R})$, $F \subset E$, then $F \in \mathcal{H}(\mathcal{R})$.

Let \mathcal{E} be any collection of sets and $\mathcal{S}(\mathcal{E})$ be the smallest σ -ring containing \mathcal{E} . Let $f \in \mathcal{S}(\mathcal{E})$. Then $\exists \{E_i\}_{i=1}^{\infty}$ in \mathcal{E} such that $f \subset \cup_{i=1}^{\infty} E_i$. Let $\mathcal{H}(\mathcal{R})$ be the collection of all sets which can be covered by a countable number of elements of \mathcal{R} . Then $\mathcal{H}(\mathcal{R})$ is hereditary.

Definition 2.16 (Outer measure). An outer measure μ^* on \mathcal{H} is an extended real valued function $\mu^* : \mathcal{H} \rightarrow \mathbb{R} \cup \{\infty\}$ such that

- (1) $\mu^*(E) \geq 0 \forall E \in \mathcal{H}$.
- (2) $\mu^*(\emptyset) = 0$.
- (3) μ^* is monotone, i.e., $E \subset F, E, F \in \mathcal{H} \implies \mu^*(E) \leq \mu^*(F)$.
- (4) μ^* is countably additive, i.e. if $E = \cup_{i=1}^{\infty} E_i, E, E_i \in \mathcal{H}$, then $\mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$.

Proposition 2.17. Let $X \neq \emptyset, \mathcal{R}$ be a ring and μ a measure. Let $E \in \mathcal{H}$. Then we know that $\exists \{E_i\}, E_i \in \mathcal{R}$ such that $E \subset \cup_{i=1}^{\infty} E_i$. Define

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu(E_i) \mid E \subset \cup_{i=1}^{\infty} E_i, E_i \in \mathcal{R} \right\}$$

Then μ^* is an outer measure on $\mathcal{H}(\mathcal{R})$ which extends μ , i.e. if $E \in \mathcal{R}$, then $\mu(E) = \mu^*(E)$.

Proof. Let $E \in \mathcal{R}$. Now, $E \subset E$, hence $\mu^*(E) \leq \mu(E)$. Let $E \subset \cup_{i=1}^{\infty} E_i$. Then $\mu(E) \leq \sum_{i=1}^{\infty} \mu(E_i)$. This is true for every cover $\{E_i\}$ of E and hence $\mu(E) \leq \mu^*(E)$. In particular, $\mu^*(\emptyset) = 0$. Clearly, $\mu^* \geq 0$.

Let $E \subset F$. Then every cover of F is also a cover of E . Hence $\mu^*(E) \leq \mu^*(F)$.

Let $E, E_i \in \mathcal{H}(\mathcal{R}), E = \cup_{i=1}^{\infty} E_i$. Assume $\exists i$ such that $\mu^*(E_i) = \infty$. Then $\sum_{i=1}^{\infty} \mu^*(E_i) = \infty \geq \mu^*(E)$. So assume that $\mu^*(E_i) < \infty \forall i$. Let $\epsilon > 0$. Then $\exists \{E_{ij}\}_{j=1}^{\infty}$ in \mathcal{R} such that $E_i \subset \cup_{j=1}^{\infty} E_{ij}$ and $\sum_{j=1}^{\infty} \mu(E_{ij}) < \mu^*(E_i) + \frac{\epsilon}{2^i}$. This is true since $\mu(E_i) < \infty$. Hence

$$\begin{aligned}
E &\subset \cup_{i=1}^{\infty} \cup_{j=1}^{\infty} E_{ij} \\
\implies \mu^*(E) &\leq \sum_{i,j=1}^{\infty} \mu(E_{ij}) \leq \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} \mu(E_{ij}) \right)
\end{aligned}$$

$$\leq \sum_{i=1}^{\infty} \mu^*(E_i) + \epsilon.$$

Hence $\mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$.

□

Example 2.18. Let $X = \mathbb{N}, \mathcal{R}$ be the set of all finite subsets in \mathbb{N} and μ be the counting measure. Then $\mathcal{H}(\mathcal{R}) = \mathcal{P}(\mathbb{N})$. $\mu^*(E) = \infty$ if E is infinite. So the outer measure may be infinite even though the measure is finite.

Definition 2.19. A measure μ (or an outer measure μ^*) is called finite if $\mu(E) < \infty$ ($\mu^*(e) < \infty$), $\forall E \in \mathcal{R}$.

A measure μ (or an outer measure μ^*) is called σ -finite if $\forall E \in \mathcal{R}$, $\exists \{E_i\} \subset \mathcal{R}$ such that $E \subseteq \bigcup_{i=1}^{\infty} E_i$ and $\mu(E_i) < \infty \forall i$ (respectively $\mu^*(E_i) < \infty \forall i$).

Proposition 2.20. If μ is σ -finite on \mathcal{R} , then μ^* is also sigma-finite on $\mathcal{H}(\mathcal{R})$.

Proof. Let $E \in \mathcal{H}(\mathcal{R})$. $\exists E_i \in \mathcal{R}$ such that $E \subset \bigcup_{i=1}^{\infty} E_i$. Since μ is σ -finite, $E_i \subset \bigcup_{j=1}^{\infty} E_{ij}$, with $E_{ij} \in \mathcal{R}$ and $\mu(E_{ij}) < \infty$. Hence $E \subset \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} E_{ij}$ and $\mu^*(E_{ij}) = \mu(E_{ij}) < \infty$. □

Definition 2.21. Let \mathcal{H} be any hereditary σ -ring and μ^* be an outer measure on \mathcal{H} . A set E is said to be μ^* -measurable if $\forall A \in \mathcal{H}$, we have

$$\mu^*(A) = \mu^*(A \cap E) + \mu(A \cap E^c).$$

We want to obtain a measure from the outer measure μ^* , hence we need to build our way towards countable additivity.

Let $\bar{\mathcal{S}}$ be the collection of all μ^* -measurable sets in \mathcal{H} .

Proposition 2.22. Let \mathcal{H} be a hereditary σ -ring, μ^* an outer measure on \mathcal{H} and $\bar{\mathcal{S}}$ the collection of μ^* -measurable sets in \mathcal{H} . Then $\bar{\mathcal{S}}$ is a ring.

Proof. Let $E, F \in \bar{\mathcal{S}}$. We must show the following:

- (1) $E \cup F \in \bar{\mathcal{S}}$
- (2) $E \setminus F \in \bar{\mathcal{S}}$.

Let $A \in \mathcal{H}$ be arbitrary.

$$\begin{aligned} E \in \bar{\mathcal{S}} &\implies \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c). \\ F \in \bar{\mathcal{S}} &\implies \mu^*(A \cap E) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F^c) \end{aligned}$$

and

$$\mu^*(A \cap E^c) = \mu^*(A \cap E^c \cap F) + \mu^*(A \cap E^c \cap F^c)$$

So

$$\mu^*(A) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F^c) + \mu^*(A \cap E^c \cap F) + \mu^*(A \cap E^c \cap F^c). \quad (1)$$

Replacing A by $A \cap (A \cap (E \cup F))$, we get:

$$\begin{aligned} \mu^*(A \cap (E \cup F)) &= \mu^*((A \cap (E \cup F)) \cap E \cap F) + \mu^*((A \cap (E \cup F)) \cap E \cap F^c) \\ &\quad + \mu^*((A \cap (E \cup F)) \cap E^c \cap F) + \mu^*((A \cap (E \cup F)) \cap E^c \cap F^c). \end{aligned}$$

This reduces to:

$$\mu^*(A \cap (E \cup F)) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cap F^c) + \mu^*(A \cap E^c \cap F). \quad (2)$$

Hence (1) becomes:

$$\mu^*(A) = \mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^c).$$

So $E \cup F \in \bar{\mathcal{S}}$.

Next, we replace A in (1) by $A \cap (E \setminus F)^c = A \cap (E \cap F^c)^c = A \cap (E^c \cup F)$ to get

$$\mu^*(A \cap (E \setminus F)^c) = \mu^*(A \cap E \cap F) + \mu^*(A \cap E^c \cap F) + \mu^*(A \cap E^c \cap F^c).$$

Substituting in (1), we get

$$\mu^*(A) = \mu^*(A \cap (E \setminus F)^c) + \mu^*(A \cap (E \setminus F)).$$

So $E \setminus F \in \bar{\mathcal{S}}$ and hence $\bar{\mathcal{S}}$ is a ring.

□

Proposition 2.23. $\bar{\mathcal{S}}$ is a σ -ring. Further, if $\{E_i\}_{i=1}^{\infty}$ is a disjoint sequence and $E = \cup_{i=1}^{\infty} E_i$, then

$$\mu^*(A \cap E) = \sum_{i=1}^{\infty} \mu^*(A \cap E_i) \quad \forall A \in \mathcal{H}. \quad (3)$$

Proof. Consider E_1 and E_2 . Since $E_1 \cap E_2 = \emptyset$, $E_1 \subseteq E_2^c$ and $E_2 \subseteq E_1^c$. Taking $E = E_1$ and $F = E_2$ in (2), we get:

$$\mu^*(A \cap (E_1 \cup E_2)) = \mu^*(A \cap E_1) + \mu^*(A \cap E_2).$$

By induction, we get:

$$\mu^*(A \cap (\cup_{i=1}^n E_i)) = \sum_{i=1}^n \mu^*(A \cap E_i).$$

Let $F_n = \cup_{i=1}^n E_i$. $F_n \in \bar{\mathcal{S}}$ since $\bar{\mathcal{S}}$ is a ring.

Let $A \in \mathcal{H}$ be arbitrary. Then

$$\begin{aligned} \mu^*(A) &= \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c) \\ &= \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap F_n^c) \\ &\geq \sum_{i=1}^n \mu^*(A \cap E_i) + \mu^*(A \cap E^c) \text{ by monotonicity.} \end{aligned} \quad (4)$$

The above is true for every $n \in \mathbb{N}$. Hence

$$\mu^*(A) \geq \sum_{i=1}^{\infty} \mu^*(A \cap E_i) + \mu^*(A \cap E^c). \quad (5)$$

Now replace A by $A \cap E$ in (5) to get:

$$\mu^*(A \cap E) \geq \sum_{i=1}^{\infty} \mu^*(A \cap E_i).$$

But by subadditivity, we already have

$$\mu^*(A \cap E) \leq \sum_{i=1}^{\infty} \mu^*(A \cap E_i).$$

Now, substituting in (4), we get

$$\mu^*(A) \geq \mu^*(A \cap E).$$

By subadditivity,

$$\mu^*(A) \leq \mu^*(A \cap E).$$

Hence $E \in \bar{\mathcal{S}}$. Thus, $\bar{\mathcal{S}}$ is closed under countable disjoint unions. But this is sufficient to show that it is a σ -ring, since it is already known to be a ring. \square

Theorem 2.24 (Caratheodory Extension). *Let \mathcal{H} be a hereditary σ -ring and μ^* be an outer measure on \mathcal{H} . Let $\bar{\mathcal{S}}$ be the σ -ring of μ^* measurable sets. Define for $E \in \bar{\mathcal{S}}$, $\bar{\mu}(E) = \mu^*(E)$. Then $\bar{\mu}$ is a measure on $\bar{\mathcal{S}}$, which is complete. That is, if $\bar{\mu}(E) = 0$ and $F \subseteq E$, then $F \in \bar{\mathcal{S}}$ and $\bar{\mu}(F) = 0$.*

Proof. Let $\{E_i\}_{i=1}^\infty$ be a disjoint sequence in $\bar{\mathcal{S}}$, $E = \bigcup_{i=1}^\infty E_i$. Taking $A = E$ in (3), we get

$$\bar{\mu}(E) = \mu^*(E) = \sum_{i=1}^\infty \mu^*(E_i) = \sum_{i=1}^\infty \bar{\mu}(E_i).$$

So $\bar{\mu}$ is a measure on $\bar{\mathcal{S}}$. Next, let $\mu^*(E) = 0$ for some $E \in \mathcal{H}$. Let $A \in \mathcal{H}$ be arbitrary. Then

$$\begin{aligned} \mu^*(A) &= \mu^*(A) + \mu^*(E) \\ &\geq \mu^*(A \cap E^c) + \mu^*(A \cap E). \end{aligned}$$

But already, $\mu^*(A) \leq \mu^*(A \cap E^c) + \mu^*(A \cap E)$. Hence $E \in \bar{\mathcal{S}}$. By monotonicity, if $F \subseteq E$, $\mu^*(F) = 0$ and so $\bar{\mu}$ is complete. \square

Theorem 2.25. *Let \mathcal{R} be a ring, μ a measure on \mathcal{R} . Let $\mathcal{H}(\mathcal{R})$ be the hereditary σ -ring generated by \mathcal{R} . Let μ^* be the canonical outer measure on $\mathcal{H}(\mathcal{R})$. Let $\bar{\mathcal{S}}$ be the σ -ring of μ^* measurable sets. Then $\mathcal{S}(\mathcal{R})$, the σ -ring generated by \mathcal{R} , is contained in $\bar{\mathcal{S}}$.*

Proof. It suffices to show that $\mathcal{R} \subset \bar{\mathcal{S}}$. Let $E \in \mathcal{R}, A \in \mathcal{H}(\mathcal{R})$ be arbitrary. We must show that $\mu^*(A) \geq \mu^*(A \cap E) + \mu^*(A \cap E^c)$. If $\mu^*(A) = \infty$, there is nothing to prove. Assume $\mu^*(A) < \infty$. Let $\epsilon > 0$. Then $\exists \{E_i\}_{i=1}^\infty \subseteq \mathcal{R}$ such that $A \subset \bigcup_{i=1}^\infty E_i$ and $\sum_{i=1}^\infty \mu(E_i) < \mu^*(A) + \epsilon$. We have

$$\begin{aligned} \mu^*(A) + \epsilon &> \sum_{i=1}^\infty \mu(E_i) \\ &= \sum_{i=1}^\infty \mu(E_i \cap E) + \sum_{i=1}^\infty \mu(E_i \cap E^c) \\ &= \sum_{i=1}^\infty \mu^*(E_i \cap E) + \sum_{i=1}^\infty \mu^*(E_i \cap E^c) \\ &\geq \mu^*(A \cap E) + \mu^*(A \cap E^c) \text{ by subadditivity.} \end{aligned}$$

Hence $E \in \bar{\mathcal{S}} \implies \mathcal{R} \subseteq \bar{\mathcal{S}}$. \square

Proposition 2.26. *Let $E \in \mathcal{H}(\mathcal{R})$. Then*

$$\begin{aligned} \mu^*(E) &= \inf \{\bar{\mu}(F) : F \in \bar{\mathcal{S}}, E \subset F\} \\ &= \inf \{\bar{\mu}(F) : F \in \mathcal{S}(\mathcal{R}), E \subset F\} \end{aligned}$$

Proof.

$$\begin{aligned}
\mu^*(E) &= \inf \left\{ \sum_{i=1}^{\infty} \mu(E_i) : E \subset \bigcup_{i=1}^{\infty} E_i, E_i \in \mathcal{R} \right\} \\
&= \inf \left\{ \sum_{i=1}^{\infty} \bar{\mu}(E_i) : E \subset \bigcup_{i=1}^{\infty} E_i, E_i \in \mathcal{R} \right\} \\
&\geq \inf \left\{ \sum_{i=1}^{\infty} \bar{\mu}(E_i) : E \subset \bigcup_{i=1}^{\infty} E_i, E_i \in \mathcal{S}(\mathcal{R}) \right\} \\
&\geq \inf \left\{ \bar{\mu}(\bigcup_{i=1}^{\infty} (E_i)) : E \subset \bigcup_{i=1}^{\infty} E_i, E_i \in \mathcal{S}(\mathcal{R}) \right\} \\
&= \inf \left\{ \bar{\mu}(F) : E \subset F, F \in \mathcal{S}(\mathcal{R}) \right\} \\
&\geq \inf \left\{ \bar{\mu}(F) : E \subset F, F \in \bar{\mathcal{S}} \right\} \\
&\geq \mu^*(E) \quad (\text{since } \bar{\mu}(F) = \mu^*(F) \geq \mu^*(E)).
\end{aligned}$$

□

Thus equality must hold in every step. In particular, we record the following equality:

$$\mu^*(E) = \inf \left\{ \bar{\mu}(\bigcup_{i=1}^{\infty} (E_i)) : E \subset \bigcup_{i=1}^{\infty} E_i, E_i \in \mathcal{S}(\mathcal{R}) \right\}.$$

But the right hand side of the above equality, by the definition of an outer measure, is equal to $(\bar{\mu})^*(E)$. Thus, if we start with the measure $\bar{\mu}$ on the σ -ring $\mathcal{S}(\mathcal{R})$, the corresponding outer measure is μ^* .

Definition 2.27. Let $E \in \mathcal{H}(\mathcal{R})$. When $F \supset E, F \in \mathcal{S}(\mathcal{R})$, we say that F is a measurable cover of E if whenever $G \in \mathcal{S}(\mathcal{R})$ and $G \subseteq F \setminus E$, then $\bar{\mu}(G) = 0$.

Proposition 2.28. Let $E \in \mathcal{H}(\mathcal{R})$ and $\mu^*(E) < \infty$. Then there exists a measurable cover of E .

Proof. Let $n \in \mathbb{N}$. Since $\mu^*(E) < \infty$, by Proposition 2.26, $\exists F_n \in \mathcal{S}(\mathcal{R})$ such that $E \subseteq F_n$ and $\bar{\mu}(F_n) < \mu^*(E) + \frac{1}{n}$. Let $F = \bigcap_{n=1}^{\infty} F_n$. Then $F \in \mathcal{S}(\mathcal{R})$ and $E \subseteq F$, and

$$\mu^*(E) \leq \mu^*(F) \leq \mu^*(F_n) = \bar{\mu}(F_n) < \mu^*(E) + \frac{1}{n} \quad \forall n \in \mathbb{N}.$$

Hence

$$\mu^*(E) = \mu^*(F) = \bar{\mu}(F).$$

Let $G \subseteq F \setminus E$, $G \in \mathcal{S}(\mathcal{R})$. Then $E \subseteq F \setminus G$ and $\mu(G) < \infty$.

$$\bar{\mu}(F) = \mu^*(E) \leq \mu^*(F \setminus G) = \bar{\mu}(F \setminus G) = \bar{\mu}(F) - \bar{\mu}(G).$$

By finiteness of $\bar{\mu}(F), \bar{\mu}(G) = 0$. □

Remark 2.29. The above is true if μ is σ -finite.

Remark 2.30. If μ is σ -finite, then μ^* is σ -finite. Hence $\bar{\mu}$ is σ -finite on $\mathcal{S}(\mathcal{R})$ and $\bar{\mathcal{S}}$.

3. LEBESGUE MEASURE

Let $\mathcal{P} = \{[a, b) : a, b \in \mathbb{R}, a \leq b\}$ and \mathcal{R} be the set of finite unions of elements from \mathcal{P} . \mathcal{R} can also be shown to be equal to the set of finite **disjoint** unions of elements of \mathcal{P} .

Define $\mu([a, b)) := b - a, \mu(\emptyset) = 0$.

Proposition 3.1. *Let $\{E_1, \dots, E_n\}$ be a finite disjoint collection of elements from \mathcal{P} , all of them contained in $E_0 \in \mathcal{P}$. Then $\sum_{i=1}^n \mu(E_i) \leq \mu(E_0)$.*

Proof. Let $E_i = [a_i, b_i], i = 0, 1, \dots, n$. If necessary, renumber the sets so that, by virtue for disjointness, $a_0 \leq a_1 < b_1 \leq a_2 < b_2 \leq \dots \leq b_n$.

$$\begin{aligned} \sum_{i=1}^n \mu(E_i) &= \sum_{i=1}^n (b_i - a_i) \\ &\leq \sum_{i=1}^n (b_i - a_i) + \sum_{i=1}^{n-1} (a_{i+1} - b_i) \\ &= b_n - a_1 \\ &\leq b_0 - a_0 \\ &= \mu(E_0) \end{aligned}$$

□

Proposition 3.2. *Let $F_0 = [a_0, b_0]$ be a closed interval contained in the union of open intervals $U_i = (a_i, b_i), i = 1, 2, \dots, n$. Then $b_0 - a_0 \leq \sum_{i=1}^n 6n(b_i - a_i)$.*

Proof. Renumber and get rid of superfluous open intervals if necessary so that $b_i \in (a_{i+1}, b_{i+1}) \forall i$. Then $a_0 \in U_1, b_0 \in U_n$ and

$$b_0 - a_0 < b_n - a_1 = (b_1 - a_1) + \sum_{i=1}^{n-1} (b_{i+1} - b_i) \leq \sum_{i=1}^n (b_i - a_i).$$

□

Proposition 3.3. *Let $\{E_0, E_1, \dots, E_n, \dots\}$ be a sequence in \mathcal{P} such that $E_0 \subset \cup_{i=1}^{\infty} E_i$. Then $\mu(E_0) \leq \sum_{i=1}^{\infty} \mu(E_i)$.*

Proof. The result is trivial if $E_0 = \emptyset$. So assume $E_0 \neq \emptyset$, i.e., $b_0 - a_0 > 0$. Choose $\epsilon > 0$ such that $0 < \epsilon < b_0 - a_0$. Let $\delta > 0$ be arbitrary. Then $F_0 = [a_0, b_0 - \epsilon] \subset E_0$. Similarly, $U_i = (a_i - \frac{\delta}{2}, b_i)$. So $E_i \subseteq U_i$. Hence, $F_0 \subseteq \cup_{i=1}^{\infty} U_i$. As F_0 is compact, $\exists n \in \mathbb{N}$ such that $F_0 \subseteq \cup_{i=1}^n U_i$. By Proposition 3.2,

$$b_0 - \epsilon - a_0 \leq \sum_{i=1}^n (b_i - a_i + \frac{\delta}{2^i}) \leq \sum_{i=1}^{\infty} (b_i - a_i) + \delta.$$

Since ϵ and δ are arbitrary, we get $b_0 - a_0 \leq \sum_{i=1}^{\infty} (b_i - a_i)$, i.e., $\mu(E_0) \leq \sum_{i=1}^{\infty} \mu(E_i)$.

□

Proposition 3.4. *μ is countably additive on \mathcal{P} . That is, if $\{E_i\} \subseteq \mathcal{P}$, E_i disjoint, $E = \cup_{i=1}^{\infty} E_i \in \mathcal{P}$, then $\mu(E) = \sum_{i=1}^{\infty} \mu(E_i)$.*

Proof. By Proposition 3.3, $\mu(E) \leq \sum_{i=1}^{\infty} \mu(E_i)$. By Proposition 3.1, $\sum_{i=1}^n \mu(E_i) \leq \mu(E) \forall n \in \mathbb{N}$. Hence $\sum_{i=1}^{\infty} \mu(E_i) \leq \mu(E)$

□

Theorem 3.5. *\exists a measure $\tilde{\mu}$ on \mathcal{R} such that*

$$\tilde{\mu}([a, b]) = \mu([a, b]) = b - a \forall [a, b] \in \mathcal{P}.$$

Proof. Let $E \in \mathcal{R}$, $E = \bigcup_{i=1}^n = \bigcup_{j=1}^m$, with $E_i, F_j \in \mathcal{P}$, E_i, F_j disjoint. Then $E_i = \bigcup_{j=1}^m (E_i \cap F_j) \forall i$ and $F_j = \bigcup_{i=1}^n (F_j \cap E_i) \forall m$. So $\mu(E_i) = \sum_{j=1}^m \mu(E_i \cap F_j)$ and $\mu(F_j) = \sum_{i=1}^n \mu(F_j \cap E_i)$. Hence $\sum_{i=1}^n \mu(E_i) = \sum_{i=1}^n \sum_{j=1}^m \mu(E_i \cap F_j) = \sum_{j=1}^m \mu(F_j)$. So we define $\tilde{\mu}$ as follows: Let $E \in \mathcal{R}$, $E = \bigcup_{i=1}^n, E_i \in \mathcal{P}$, E_i disjoint. Let $\tilde{\mu}(E) = \sum_{i=1}^n \mu(E_i)$. Then

- (1) $\tilde{\mu}(\emptyset) = 0$
- (2) $\tilde{\mu} \geq 0$
- (3) $\tilde{\mu}$ is finitely additive.
- (4) $\tilde{\mu}$ is countably additive.

We now prove that $\tilde{\mu}$ is countably additive. Let $E = \bigcup_{i=1}^{\infty} E_i, E \in \mathcal{R}, E_i \in \mathcal{R}, E_i$ disjoint. Then for each $i, E_i = \bigcup_{k=1}^{n_i} E_{ik}, E_{ik} \in \mathcal{P}, E_{ik}$ disjoint.

- (1) If $E \in \mathcal{P}$, then $E = \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{n_i} E_{ik}, E_{ik} \in \mathcal{P}, E \in \mathcal{P}$. By Proposition 3.4, $\tilde{\mu}(E) = \sum_{i=1}^{\infty} \sum_{k=1}^{n_i} \mu(E_{ik}) = \sum_{i=1}^{\infty} \mu(E_{ik})$.
- (2) If $E \in \mathcal{R}$, then $E = \bigcup_{i=1}^n F_j, F_j \in \mathcal{P}$ disjoint. Then $F_j = E \cap F_j = \bigcup_{i=1}^{\infty} E_i \cap F_j$, where the $E_i \cap F_j$ are in \mathcal{R} and disjoint. Now,

$$\begin{aligned} \tilde{\mu}(E) &= \sum_{j=1}^n \mu(F_j) \\ &= \sum_{j=1}^n \left(\sum_{i=1}^{\infty} \mu(E_i \cap F_j) \right) \\ &= \sum_{i=1}^{\infty} \left(\sum_{j=1}^n \mu(E_i \cap F_j) \right) \end{aligned}$$

$E_i = E \cap E_i = \bigcup_{j=1}^n E_i \cap F_j$. Hence by finite additivity of $\tilde{\mu}$,

$$\tilde{\mu}(E) = \sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} \tilde{\mu}(E_i).$$

□

Hereafter we refer to $\tilde{\mu}$ as merely μ . Thus we now have a measure μ on the ring \mathcal{R} . By the Caratheodory extension theorem, we get the completion of μ , μ^* from which we get $\bar{\mu}$ on the σ -rings $\mathcal{S}(\mathcal{R})$ and $\bar{\mathcal{S}}$. $\bar{\mu}$ is called the Lebesgue measure on \mathbb{R} , and sets in $\bar{\mathcal{S}}$ are called Lebesgue measurable sets.

Since $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} [n, n+1], \mathbb{R} \in \mathcal{H}(\mathcal{R})$. Hence $\mathcal{H}(\mathcal{R})$ is in fact a σ -algebra and is equal to all the subsets of \mathbb{R} . $\bar{\mu}(\mathbb{R}) = \infty$, but $\bar{\mu}$ is a σ -finite measure. Henceforth we drop the bar and simply write μ .

Suppose we take \mathbb{R}^n instead of \mathbb{R} . Let $\mathcal{P} = \{\prod_{i=1}^n [a_i, b_i] : a_i < b_i\}$. Then Propositions 3.1, 3.2, 3.3 and 3.4 are true, so that all of the above is true.

What is $\mu(\mathbb{R})$ in (\mathbb{R}^2, μ) , where μ is the Lebesgue measure in \mathbb{R}^2 ? It is 0. To prove this, let $[a, b] \subset \mathbb{R}$. Let $E_{\epsilon} = [a, b] \times [0, \epsilon]$. Then $\mu(E_{\epsilon}) = \epsilon(b-a)$. Since $[a, b] \times \{0\} = \bigcap_{n=1}^{\infty} E_{\frac{1}{n}}$, $\mu([a, b] \times \{0\}) = \lim_{n \rightarrow \infty} \frac{1}{n}(b-a) = 0$. Now $\mathbb{R} = \mathbb{R} \times \{0\} = \bigcup_{n \in \mathbb{Z}} [n, n+1] \times \{0\}$. Hence $\mu(\mathbb{R}) = 0$.

In general, if μ is the Lebesgue measure on \mathbb{R}^n , and if E is a subspace of \mathbb{R}^n with dimension strictly less than n , then $\mu(E) = 0$.

Proposition 3.6. $\mathcal{S}(\mathcal{R}) = \mathcal{S}(U)$, where U is the collection of all open subsets of \mathbb{R} . That is, $\mathcal{S}(\mathcal{R})$ is the Borel σ -algebra on \mathbb{R} .

Proof. Let $a, b \in \mathbb{R}$. $(a, b) = [a, b] \setminus \{a\}$ and $\{a\} = \cap_{n=1}^{\infty} [a, a + \frac{1}{n}) \in \mathcal{S}(\mathcal{R})$. Hence $(a, b) \in \mathcal{S}(\mathcal{R})$. Since every open set is the countable union of open intervals, $U \subseteq \mathcal{S}(\mathcal{R})$. Hence $\mathcal{S}(U) \subseteq \mathcal{S}(\mathcal{R})$.

Conversely, $[a, b] = (a, b) \cup \{a\}$ and $\{a\} = \cap_{n=1}^{\infty} (a - \frac{1}{n}, a + \frac{1}{n}) \in \mathcal{S}(U)$. Thus $[a, b] \in \mathcal{S}(U) \implies \mathcal{P} \subseteq \mathcal{S}(U) \implies \mathcal{R} \subseteq \mathcal{S}(U) \implies \mathcal{S}(\mathcal{R}) \subseteq \mathcal{S}(U)$. \square

Corollary 3.7. Every countable set is Borel measurable and its measure is 0.

Proof. We have seen that $\{a\} = \cap_{n=1}^{\infty} (a - \frac{1}{n}, a + \frac{1}{n}) \in \mathcal{S}(U) = \mathcal{S}(\mathcal{R})$ and $\mu(\{a\}) = \lim_{n \rightarrow \infty} \frac{2}{n} = 0$. By countable additivity, the measure of a countable set is 0. \square

Proposition 3.8. Let $E \subseteq \mathbb{R}$. Then $\mu^*(E) = \inf \{\mu^*(U) : U \text{ open}, E \subset U\}$.

Proof. The proposition is trivially true if $\mu^*(E) = \infty$. Assume $\mu^*(E) < \infty$. If $E \subset U$, then $\mu^*(E) \leq \mu^*(U)$. Hence $\mu^*(E) \leq \inf \{\mu^*(U) : U \text{ open}, E \subset U\}$. Let $\epsilon > 0$. Then $\exists E_i = [a_i, b_i]$ such that $E \subset \cup_{i=1}^{\infty} E_i$ and $\sum_{i=1}^{\infty} \mu(E_i) < \mu^*(E) + \frac{\epsilon}{2}$. i.e., $\sum_{i=1}^{\infty} (b_i - a_i) < \mu^*(E) + \frac{\epsilon}{2}$.

$E_i \subset U_i = (a_i - \frac{\epsilon}{2^{i+1}}, b_i)$. Let $U = \cup_{i=1}^{\infty} U_i$, an open set. Then $E \subset U$ and $\mu^*(U) \leq \sum_{i=1}^{\infty} (b_i - a_i) + \frac{\epsilon}{2} < \mu^*(E) + \epsilon$. Hence $\mu^*(E) = \inf \{\mu^*(U) : U \text{ open}, E \subset U\}$. \square

Proposition 3.9. Let $E \subseteq \mathbb{R}$. Then the following are equivalent:

- (1) E is (Lebesgue) measurable.
- (2) Given $\epsilon > 0$, \exists an open set U such that $E \subset U$, $\mu^*(U \setminus E) < \epsilon$.
- (3) Given $\epsilon > 0$, \exists a closed set F such that $F \subset E$, $\mu^*(E \setminus F) < \epsilon$.
- (4) $\exists G$, a G_{δ} set such that $E \subset G$, $\mu^*(G \setminus E) = 0$.
- (5) $\exists F$, an F_{σ} set such that $F \subset E$, $\mu^*(E \setminus F) = 0$.

Proof. We first show that (1) \implies (2) \implies (4) \implies (1). Suppose (1) holds. First assume that $\mu^*(E) < \infty$. For $\epsilon > 0$, $\exists U$ open such that $E \subset U$ and $\mu^*(U) < \mu^*(E) + \epsilon$. Since E is measurable, $\mu^*(U \setminus E) = \mu^*(U) - \mu^*(E) < \epsilon$. If $\mu^*(E) = \infty$, we can write $E = \cup_{i=1}^{\infty} E_i$, $\mu^*(E_i) < \infty$, by σ finiteness. For each E_i , $\exists U_i$ such that $\mu^*(U_i \setminus E_i) < \frac{\epsilon}{2^i}$. Let $U = \cup_{i=1}^{\infty} U_i$, which is open. Then, $E \subset U$ and $\mu^*(U \setminus E) \leq \sum_{i=1}^{\infty} \mu^*(U_i \setminus E_i) < \sum_{i=1}^{\infty} \frac{\epsilon}{2^i} = \epsilon$. Hence (2) holds.

Next, suppose (2) holds. Given E , choose U_n open such that $\mu^*(U_n \setminus E) < \frac{1}{n}$. Let $G = \cap_{n=1}^{\infty} U_n$. Then $E \subset G$ and $\mu^*(G \setminus E) \leq \mu^*(U_n \setminus E) < \frac{1}{n} \forall n$. Hence $\mu^*(G \setminus E) = 0$, i.e., (4) holds.

Finally, suppose (4) holds. $\mu^*(G \setminus E) = 0 \implies G \setminus E$ is measurable, since μ^* is a complete measure. G is Borel measurable since it is a G_{δ} set, and hence measurable. Hence $E = G \setminus (G \setminus E)$ is measurable, i.e. (1) holds.

Finally, we show that (1) \implies (3) \implies (4). Suppose E is measurable. Then E^c is measurable. Since (1) \implies (2), for $\epsilon > 0$, $\exists U$ open such that $E^c \subseteq U$ and $\mu^*(U \setminus E^c) < \epsilon$. Let $F = U^c$. Then F is closed and $F \subseteq E$. Since $U \setminus E^c = E \setminus U^c$, we get $\mu^*(E \setminus F) = \mu^*(E \setminus U^c) = \mu^*(U \setminus E^c) < \epsilon$.

Suppose (3) holds. Given E , choose F_n closed such that $F_n \subseteq E$ and $\mu^*(E \setminus F_n) < \frac{1}{n}$. Let $F = \bigcup_{n=1}^{\infty} F_n$. Then $F \subseteq E$ and $\mu^*(E \setminus F) \leq \mu^*(E \setminus F_n) < \frac{1}{n} \forall n$. Hence $\mu^*(E \setminus F) = 0$.

Suppose (5) holds. Since $\mu^*(E \setminus F) = 0$, $E \setminus F$ is measurable. F is measurable as it is an F_σ set. Hence $E = (E \setminus F) \cup F$ is measurable. \square

Let $X = [0, 1]$, $X_1 = (\frac{1}{3}, \frac{2}{3})$, $X_2 = (\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9})$, X_3 the union of the four middle third intervals of $X \setminus (X_1 \cup X_2)$. Let $C = X \setminus (\bigcup_{n=1}^{\infty} X_n)$. Then the following hold:

- (1) Each X_n is open and hence C is closed.
- (2) $\mu(X_1) = \frac{1}{3}$, $\mu(X_2) = \frac{2}{9}$, $\mu(X_3) = \frac{4}{27}$. In general, $\mu(X_n) = \frac{2^{n-1}}{3^n}$. Hence $\mu(\bigcup_{n=1}^{\infty} X_n) = 1$ and $\mu(C) = 0$. C can be thought of as the set of numbers between 0 and 1 such that 1 does not occur anywhere in its ternary expansion.
- (3) C is uncountable by Cantor's diagonalisation,
- (4) C is nowhere dense.

$\mu(C) = 0$ implies that every subset of C is measurable. The cardinality of C is c (continuum), hence the cardinality of Lebesgue measurable sets is 2^c . However, it can be shown that the cardinality of Borel measurable sets is c . Hence Borel measurable sets are properly contained in Lebesgue measurable sets. In particular, this means that the Borel measure on $\mathcal{S}(\mathcal{R})$ on \mathbb{R} is not complete.

Let $T : \mathbb{R} \rightarrow \mathbb{R}$ be given by $Tx = \alpha x + \beta$, $\alpha > 0$. Then T is a bijection and $T^{-1}x = \frac{x-\beta}{\alpha}$.

Let $\mathcal{S} = \mathcal{S}(\mathcal{R})$ be the Borel σ -algebra. Let $T(\mathcal{S}) = \{T(E) : E \in \mathcal{S}\}$. Then $T(\mathcal{S})$ is a σ -algebra. Since T is a bijection, $T(\mathbb{R}) = \mathbb{R}$. $T(A \setminus B) = T(A) \setminus T(B)$ and $T(\bigcup_i E_i) = \bigcup_i T(E_i)$.

Suppose $E = [a, b] = T(F)$, where $F = [\frac{a-\beta}{\alpha}, \frac{b-\beta}{\alpha}]$. Hence $\mathcal{P} \subset T(\mathcal{S})$ and thus $\mathcal{S} \subset T(\mathcal{S})$. Similarly, $\mathcal{S} \subset T^{-1}(\mathcal{S})$ and thus $T(\mathcal{S}) = \mathcal{S}$. Thus, E is a Borel set iff $T(E)$ is a Borel set.

Proposition 3.10. *Let $E \subset \mathbb{R}$. Then $\mu^*(T(E)) = \alpha \mu^*(E)$.*

Proof. $\mu^*(T(E)) = \inf \{\sum \mu(F_i) : F_i \in \mathcal{P}, T(E) \subset \bigcup F_i\}$. But $F_i = T(E_i)$ for some $E_i \in \mathcal{P}$ and $E_i \supset E$. Hence $\mu^*(T(E)) = \inf \{\sum \mu(T(E_i)) : E_i \in \mathcal{P}, E \subset \bigcup E_i\}$. If $E_i = [a, b]$, $T(E_i) = [\alpha a + \beta, \alpha b + \beta]$ and $\mu(T(E_i)) = \alpha(b - a) = \alpha \mu^*(E)$. Hence $\mu^*(T(E)) = \alpha \mu^*(E)$. \square

Now assume $E \subset \mathbb{R}$ is Lebesgue measurable. We claim that $T(E)$ is Lebesgue measurable. Let $A \subset \mathbb{R}$. Then

$$\begin{aligned}\mu^*(A \cap T(E)) + \mu^*(A \cap (T(E))^c) &= \mu^*(T(T^{-1} \cap E)) + \mu^*(T(T^{-1}(A) \cap E^c)) \\ &= \alpha[\mu^*(T^{-1}(A) \cap E) + \mu^*(T^{-1}(A) \cap E^c)] \\ &= \alpha\mu^*(T^{-1}(A)) \text{ since } E \text{ is Lebesgue measurable} \\ &= \alpha \frac{1}{\alpha} \mu^*(A).\end{aligned}$$

Remark 3.11. If $\alpha = 1$, then all of the above goes through in \mathbb{R}^n as well.

Remark 3.12. If $\alpha = 1$, $T(E + x) = T(E) \forall E, \forall x$. That is, the Lebesgue measure is translation invariant.

Theorem 3.13. Let ν be a Borel measure on \mathbb{R}^N such that

- (1) $\nu(K) < \infty \quad \forall K \subset \mathbb{R}^n$ compact
- (2) $\nu(E) = \inf \{\nu(V) : V \text{ open, } E \subset V\} \quad \forall E \text{ Borel}$
- (3) ν is translation invariant.

Then \exists a constant $c \in \mathbb{R}$ such that $\nu = c\mu$, i.e. for all Borel measurable sets E , $\nu(E) = c\mu(E)$.

Proof. Let $a = (a_1, \dots, a_N) \in \mathbb{R}^N$ and $\delta > 0$. Let $Q(a, \delta) = \prod_{i=1}^N [a_i, a_i + \delta]$. Denote by Ω_n the collection of all boxes of this form where $\delta = 2^{-n}$ and a has coordinates which are integral multiples of 2^{-n} .

- (1) If $x \in \mathbb{R}^N$, then x belongs to exactly one box of $\Omega_n \forall n$.
- (2) Every open set is the countable disjoint union of boxes taken from $\Omega_1 \cup \Omega_2 \cup \dots$.
- (3) Let $Q = Q(a, 1)$. Then Q is the disjoint union of 2^{Nn} identical boxes \tilde{Q} from Ω_n .

Since ν and μ are translation invariant, all these boxes have the same measure. $\mu(Q) = 1$. Let $\nu(Q) = c$. Then

$$2^{Nn}\nu(\tilde{Q}) = \nu(Q) = c = c\mu(Q) = c2^{Nn}\mu(\tilde{Q}).$$

Hence $\nu(\tilde{Q}) = c\mu(\tilde{Q})$. By (2), it follows that if U is open, $\nu(U) = c\mu(U)$. By the second hypothesis, $\nu(E) = c\mu(E)$. \square

Theorem 3.14. Let $A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be linear. Then for all Borel sets E in \mathbb{R}^n , $\mu(A(E)) = |\det A| \mu(E)$.

Proof. (1) If A is singular, then $A(E) \subset A(\mathbb{R}^n) =$ a lower dimensional subspace of \mathbb{R}^n . Then $\mu(A(\mathbb{R}^n)) = 0$. Hence $A(E)$ is Lebesgue measurable and $\mu(A(E)) = 0 = |\det A| \mu(E)$.

- (2) Let A be non-singular. Now E is Borel iff $A(E)$ is Borel. $\mathcal{S} = \{E : A(E) \text{ is Borel}\}$ is a σ -algebra since E open iff $A(E)$ open, $E = \bigcup E_i$, E_i disjoint, then $A(E) = \bigcup A(E_i)$. Define $\nu(E) = \mu(A(E))$. Then ν is a measure on \mathcal{S} . K compact implies that $A(E)$ is compact. Hence $\nu(K) = \mu(A(K)) < \infty$ and $\nu(E + x) = \mu(A(E) + Ax) = \mu(A(E)) = \nu(E)$.

Thus ν is translation invariant. $E \subset V$ is open iff $A(E) \subset A(V)$ is open. Hence

$$\begin{aligned} \inf \{\nu(V) : V \supset E, V \text{ open}\} &= \inf \{\mu(A(V)) : V \supset E\} \\ &= \inf \{\mu(A(V)) : A(V) \supset A(E)\} \\ &= \mu(A(E)) \\ &= \nu(E). \end{aligned}$$

Hence $\nu = c_A \mu$ by Theorem 3.13. Claim: $c_{AB} = c_A c_B$.

Exercise 3.15. (a) If A is orthogonal and E the unit ball. Show that $A(E) = E \implies c_A = 1 = \det A$.

(b) A diagonal, $A = \text{diag}(\lambda_1, \dots, \lambda_n)$, $\lambda_i > 0 \forall i$ and $E = [0, 1]^N$. Then $A(E) = \prod_{i=1}^N [0, \lambda_i]$, and $\mu(A(E)) = \prod_{i=1}^N \lambda_i = \det A$.

(c) A non-singular. Then $A = RQ$, where R is positive definite and Q orthogonal. R can further be written as $P^T DP$, where P is orthogonal and D is diagonal. Then $A = P^T DPQ$ and $c_A = \det D = |\det A|$.

□

We now construct a non-(Lebesgue) measurable set. Let $x, y \in [0, 1]$. Then

$$x + y = \begin{cases} x + y, & x + y < 1 \\ x + y - 1, & x + y \geq 1 \end{cases}$$

Let $E \subset [0, 1]$. Then $E + y = \{x + y : x \in E\}$.

Lemma 3.16. *If $E \subset [0, 1]$ is measurable, then $E + y$ is measurable for all $y \in [0, 1]$ and $\mu(E + y) = \mu(E)$.*

Proof. For each $y \in Y$, let $E_1 = E \cap [0, 1 - y)$ and $E_2 = E \cap [1 - y, 1]$. They are disjoint and $\mu(E) = \mu(E_1 + \mu(E_2))$. $E_1 + y = E_1 + y$ and $E_2 + y = E_2 + (y - 1)$. Claim: $(E_1 + y) \cap (E_2 + y) = \emptyset$. If not, suppose $\exists a, b \in [0, 1]$ such that $a \in E_1, b \in E_2$ and $a + y = b + y - 1$. Then $b - a = 1$ which is a contradiction, since $a, b \in [0, 1]$. Hence

$$\begin{aligned} \mu(E + y) &= \mu(E_1 + y) + \mu(E_2 + y) \\ &= \mu(E_1) + \mu(E_2) \\ &= \mu(E). \end{aligned}$$

□

Let $x, y \in [0, 1]$. Define a relation on $[0, 1]$ by: $x \sim y \iff x - y \in \mathbb{Q}$. This is an equivalence relation. Thus, $[0, 1]$ can be written as the disjoint union of equivalence classes. Let P be the set made up of exactly one representative from each equivalence class, using the axiom of choice.

Claim: P is not measurable. Let $\{r_i\}$ be an enumeration of the set in $[0, 1]$ such that $r_0 = 0$. Let $P_i = P + r_i$. The P_i s are mutually disjoint, for if $x \in P_i \cap P_j$, then $x = r_i + p_i = r_j + p_j, p_i, p_j \in P \implies p_i - p_j \in \mathbb{Q} \implies p_i \sim p_j$. For each $i, \mu(P_i) = \mu(P)$ and $\bigcup_{i=1}^{\infty} P_i = [0, 1]$. If P is measurable, then $\sum \mu(P_i) = 1$, a contradiction. Hence $\bar{S} \subsetneq \mathcal{P}(\mathbb{R})$.

Remark 3.17. (1) Let $E \subset P$ be measurable and $E_i = E + r_i$. The E_i s are disjoint measurable sets and $\mu(E_i) = \mu(E)$. Then $1 \geq \mu(E) = \sum \mu(E_i)$. Hence the only measurable subsets of P are of emasure 0.

- (2) Let $A \subset [0, 1], \mu(A) > 0$ and $E_i = A \cap P_i$. If all E_i s are measurable, then $\mu(A) = \sum \mu(E_i)$. But $\mu(E_i) = 0$ by the previous remark. Hence, one of the E_i s is not measurable. So every set of positive measure has a non-measurable set.

4. MEASURABLE FUNCTIONS

Let X be a non-empty set and \mathcal{S} be a σ -algebra on X . Then (X, \mathcal{S}) is a measurable space and elements of \mathcal{S} are called measurable sets. Suppose μ is a measure on \mathcal{S} . Then (X, \mathcal{S}, μ) is called a measure space.

Definition 4.1. Let X, \mathcal{S} be a measurable space, and $f : X \rightarrow \mathbb{R} \cup \{+\infty\}$ be an extended real-valued function. Then f is said to be measurable if $\forall \alpha \in \mathbb{R}$, the set $\{x : f(x) > \alpha\} \in \mathcal{S}$, i.e., $f^{-1}((\alpha, \infty]) \in \mathcal{S} \forall \alpha \in \mathbb{R}$.

Remark 4.2. Let $X = \mathbb{R}$ and $f : X \rightarrow \mathbb{R} \cup \{\pm\infty\}$. Then f is said to be Lebesgue (respectively Borel) measurable if $f^{-1}((-\infty, \infty))$ is a Lebesgue (respectively Borel) measurable set.

Proposition 4.3. Let f be an extended real-valued function on a measurable space (X, \mathcal{S}) . Then the following are equivalent:

- (1) $\forall \alpha \in \mathbb{R}, f^{-1}((\alpha, \infty]) \in \mathcal{S}$.
- (2) $\forall \alpha \in \mathbb{R}, f^{-1}([\alpha, \infty]) \in \mathcal{S}$.
- (3) $\forall \alpha \in \mathbb{R}, f^{-1}([-\infty, \alpha)) \in \mathcal{S}$.
- (4) $\forall \alpha \in \mathbb{R}, f^{-1}([-\infty, \alpha]) \in \mathcal{S}$.

Proof. (1) \implies (2) follows from $f^{-1}([\alpha, \infty]) = \cap_n f^{-1}((\alpha - \frac{1}{n}, \infty])$. (2) \implies (3) follows from $f^{-1}([-\infty, \alpha)) = f^{-1}([\alpha, \infty]^c) = f^{-1}([\alpha, \infty])^c$. (3) \implies (4) follows from $f^{-1}([\infty, \alpha]) = \cap_n f^{-1}([-\infty, \alpha + \frac{1}{n}])$. (4) \implies (1) follows from $f^{-1}((\alpha, \infty]) = f^{-1}([-\infty, \alpha]^c) = f^{-1}([-\infty, \alpha])^c$. \square

Corollary 4.4. If f is measurable, then:

- (1) For $\alpha \in \mathbb{R} \cup \{\infty\}$, $f^{-1}(\{\alpha\})$ is measurable.
- (2) For V open in \mathbb{R} , $f^{-1}(V)$ is measurable.

Proof. (1) $\{\infty\} = \cap_n [n, \infty]$ and $\{-\infty\} = \text{cap}_n [-\infty, -n]$. For $\alpha \in \mathbb{R}$, $\{\alpha\} = (-\infty, \alpha] \cap [\alpha, \infty)$.
(2) $(a, b) = [-\infty, b) \cap (a, \infty] \implies f^{-1}((a, b)) \in \mathcal{S} \implies f^{-1}(V) \in \mathcal{S}$. \square

Remark 4.5. Let $f : X \rightarrow \mathbb{R}$. Then f is measurable iff $f^{-1}(U)$ is measurable for all open sets U . This holds as $f^{-1}([-\infty, \alpha)) - f^{-1}((-\infty, \alpha)) \in \mathcal{S}$. But $f^{-1}(\{\alpha\}) \in \mathcal{S} \forall \alpha \in \mathbb{R} \not\implies f$ is measurable.

Example 4.6. Let $X = \mathbb{R}$ and μ be the Lebesgue measure. Let E be a non-measurable subset of $[0, 1]$. Define

$$f(x) = \begin{cases} x, & x \in E \\ -x, & x \in [0, 1] \setminus E \\ -2, & x \notin [0, 1] \end{cases}$$

Then

$$f^{-1}(\{\alpha\}) = \begin{cases} \mathbb{R} \setminus [0, 1], & \alpha = -2 \\ \{\alpha\}, & -\alpha \in [0, 1) \setminus E \\ \{\alpha\}, & \alpha \in E \\ \emptyset, & \text{otherwise} \end{cases}$$

So the inverse of each singleton set is measurable. But $\{x : f(x) > 0\} = f^{-1}((0, \infty]) = E$ which is not measurable.

Exercise 4.7. (1) Let $A \subset X$. Define

$$\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Then χ_A is measurable iff A is measurable.

(2) Every continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$ is both Lebesgue and Borel measurable.

Proposition 4.8. Let f, g be measurable functions on (X, \mathcal{S}) and $c \in \mathbb{R}$. Then $cf, f + g$ and fg are all measurable.

Proof.

$$\{x : xf(x) < \alpha\} = \begin{cases} \{x : f(x) < \frac{\alpha}{c}\}, & c > 0 \\ \{x : f(x) > \frac{\alpha}{c}\}, & c < 0 \end{cases}$$

In particular, $-f$ is measurable.

$$\begin{aligned} \{x : f(x) + g(x) < \alpha\} &= \{x : f(x) < \alpha - g(x)\} \\ &= \bigcup_{r \in \mathbb{Q}} (\{x : f(x) < r\}) \cap \{x : g(x) < \alpha + r\} \end{aligned}$$

Finally, we show that f measurable implies that f^2 is measurable. This shows that fg is measurable as $fg = \frac{(f+g)^2 - (f-g)^2}{4}$.

$$\{x : f^2 > \alpha\} = \begin{cases} \emptyset, & \alpha \leq 0 \\ \{x : f(x) > \sqrt{\alpha}\} \cup \{x : f(x) < -\sqrt{\alpha}\}, & \alpha > 0 \end{cases}$$

□

Proposition 4.9. If f is measurable then so is $|f|$.

Proof. $\{x : |f(x)| < \alpha\} = \{x : -\alpha < f(x) < \alpha\}$.

□

But the converse is not true.

Example 4.10. Let E be a non-measurable set. Let

$$f(x) = \begin{cases} 1, & x \in E \\ -1, & x \notin E \end{cases}$$

Definition 4.11. $\text{Max } \{f, g\} = \frac{1}{2}(f+g+|f-g|)$ and $\text{Min } \{f, g\} = \frac{1}{2}(f+g-|f-g|)$. Let $f^+ = \max \{f, 0\}$ and $f^- = -\min \{f, 0\}$. Then $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Proposition 4.12. Let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be Borel measurable and $f : X \rightarrow \mathbb{R}$ be a real-valued measurable function. Then $\phi \circ f : X \rightarrow \mathbb{R}$ is measurable.

Proof. $\{x : \phi(f(x)) > \alpha\} = f^{-1}(\phi^{-1}((\alpha, \infty]))$. Now, $\phi^{-1}((\alpha, \infty])$ is a Borel set. Hence it suffices to show that f measurable implies that $f^{-1}(E)$ is measurable for all Borel sets E . Let $\tilde{\mathcal{S}} = \{E : f^{-1}(E) \text{ is measurable}\}$. Then $\tilde{\mathcal{S}}$ is a σ -algebra containing open sets and hence contains all Borel sets. \square

Proposition 4.13. Suppose $\{f_n\}$ is a sequence of measurable functions. Let $h(x) = \sup_n f_n(x)$ and $g(x) = \inf_n f_n(x)$. Then h and g are measurable.

Proof. The proof follows as

$$\{x : h(x) > c\} = \bigcup_{n=1}^{\infty} \{x : f_n(x) > c\}$$

and

$$\{x : g(x) < c\} = \bigcup_{n=1}^{\infty} \{x : f_n(x) < c\}.$$

\square

Corollary 4.14. Suppose $\{f_n\}$ is a sequence of measurable functions. Then $\limsup_{n \rightarrow \infty} f_n$ and $\liminf_{n \rightarrow \infty} f_n$ are measurable.

Proof. The proof follows as

$$\limsup_{n \rightarrow \infty} f_n(x) = \inf_n \sup_{m \geq n} f_m(x)$$

and

$$\liminf_{n \rightarrow \infty} f_n(x) = \sup_n \inf_{m \geq n} f_m(x)$$

\square

Corollary 4.15. If $\{f_n\}$ is a sequence of measurable functions and $f_n \rightarrow f$, then f is measurable.

Definition 4.16. A function of the form $f = \sum_{i=1}^n \alpha_i \chi_{A_i}$ is said to be a simple function.

Theorem 4.17. Let f be an extended real valued measurable function which is non-negative. Then f is the increasing limit of non-negative simple functions, i.e. $\exists f_n$ simple such that $f_n \geq 0$, $f_n \leq f_{n+1} \forall n$ and $\lim_{n \rightarrow \infty} f_n(x) = f(x) \forall x$.

Proof. Let $n \in \mathbb{N}$. For i such that $1 \leq i \leq n 2^n$, define $E_{n,i} = f^{-1}([\frac{i-1}{2^n}, \frac{i}{2^n}))$ and $F_n = f^{-1}([n, \infty])$. Then $E_{n,i}, F_n$ are all measurable. Define

$$f_n = \left(\sum_{i=1}^{n 2^n} \frac{i-1}{2^n} \chi_{E_{n,i}} \right) + \chi_{F_n}.$$

Then $f_n \geq 0$, f_n simple and $f_n \leq f$. In fact,

$$f_n(x) = \begin{cases} n, & f(x) \geq n \\ \frac{i-1}{2^n}, & f(x) < n \text{ and } f(x) \in [\frac{i-1}{2^n}, \frac{i}{2^n}). \end{cases}$$

Hence $f_n \leq f_{n+1}$ and $\lim_{n \rightarrow \infty} f_n = f$. \square

Since every measurable function f can be written as the difference of two non-negative functions, i.e. $f = f^+ - f^-$, we get the following corollary.

Corollary 4.18. Every measurable function is the pointwise limit of simple functions.

4.1. The Cantor Function. Let $C = [0, 1]$ and C be the Cantor set. Define

$$f_0(x) = x \quad \forall x \in X,$$

$$f_1(x) = \begin{cases} x, & x \in [0, \frac{1}{3}] \\ \frac{1}{3}, & x \in [\frac{1}{3}, \frac{2}{3}] \\ 2(x - \frac{2}{3}) + \frac{1}{3}, & x \in [\frac{2}{3}, 1] \end{cases}$$

$$f_2(x) = \begin{cases} x, & x \in [0, \frac{1}{9}] \\ \frac{1}{9}, & x \in [\frac{1}{9}, \frac{2}{9}] \\ 2(x - \frac{1}{3}) + \frac{1}{3}, & x \in [\frac{2}{9}, \frac{1}{3}] \\ \frac{1}{3}, & x \in [\frac{1}{3}, \frac{2}{3}] \\ 2(x - \frac{2}{3}) + \frac{1}{3}, & x \in [\frac{2}{3}, \frac{7}{9}] \\ \frac{5}{9}, & x \in [\frac{7}{9}, \frac{8}{9}] \\ 4(x - \frac{2}{3}) - \frac{1}{3}, & x \in [\frac{8}{9}, 1] \end{cases}$$

Continuing in this fashion we get a sequence $\{f_n\}$ such that $f_n \leq f_{n+1} \forall n$, and $\max |f_n(x) - f_{n+1}(x)| \leq \frac{2}{3}^{n+1}$. Hence $\|f_n - f_{n+1}\|_\infty \leq \frac{2}{3}^{n+1}$. Hence $\{f_n\}$ is uniformly Cauchy. Thus $f_n \rightarrow f$ uniformly to a continuous function f . f is non-decreasing and is constant on each interval in the complement of the Cantor set. f is called the Cantor function.

Define $\psi(y) = y + f(y)$. Then ψ is continuous, non-negative and strictly monotonic. $\psi(0) = 0$, $\psi(1) = 2$, and hence $\psi : [0, 1] \rightarrow [0, 2]$ is 1–1 and onto. Let ϕ be its inverse, i.e., $x = \phi(y) + f(\phi(y))$. Then ϕ is also monotonic; $x \geq y \implies \phi(x) \geq \phi(y)$. Now,

$$x - y = \phi(x) - \phi(y) + f(\phi(x)) - f(\phi(y)),$$

and $f(\phi(x)) - f(\phi(y)) \geq 0$. Hence $|\phi(x) - \phi(y)| \leq |x - y|$, i.e. ϕ is Lipschitz continuous. In particular, it is continuous.

Since ψ is 1–1, it maps disjoint sets into disjoint sets. Let I be an interval in C^c . Let $x \in I$. Then $\psi(x) = x + c_I$, where f takes the value c_I on I . Hence $\psi(I)$ is a translate of I . Thus

$$\begin{aligned} \mu(C^c) &= \mu(\psi(C^c)) \\ &= 1. \end{aligned}$$

Hence $\mu(\psi(C)) = 1$ as $\mu(\psi(X)) = 2$. Let S be a non-measurable set contained in $\psi(C)$. Let $M = \psi^{-1}(S) \subset C$. Then M is Lebesgue measurable since μ is complete and $\mu(C) = 0$. Claim: M is not Borel measurable. Suppose M were Borel measurable. Then $\phi^{-1}(M)$ is Borel measurable as ϕ is continuous. Then $\phi^{-1}(M)$ is Lebesgue measurable. But $\phi^{-1}(M) = S$. Hence we get a contradiction.

Let $\Phi = \chi_M$. Then Φ is Lebesgue measurable. Define $\eta = \Phi \circ \phi$. η . Since ψ is continuous, it is Lebesgue measurable. If η were measurable, then $\eta^{-1}(\{1\})$ is measurable. But

$$\begin{aligned} \eta^{-1}(\{1\}) &= \{x : \eta(x) = 1\} \\ &= \{x : \Phi(\phi(x)) = 1\} \\ &= \phi^{-1}(M) \\ &= S, \end{aligned}$$

which is not measurable. Hence the composition of two measurable functions need not be measurable.

Definition 4.19. An occurrence is said to happen **almost everywhere** if it occurs on a set E such that $\mu(E^c) = 0$.

Exercise 4.20. Are the following statements equivalent? Or does any one imply the other?

- (1) f is continuous almost everywhere (a.e.).
- (2) $f = g$ almost everywhere, and g is continuous.

In fact, neither statement implies the other. To see that (1) $\not\Rightarrow$ (2), let

$$f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \geq 0 \end{cases}$$

Then f is continuous almost everywhere. But for any g which is equal to f a.e., g is not continuous. For (2) $\not\Rightarrow$ (1), let $f = \chi_{\mathbb{Q}}$ and $g \equiv 0$ on \mathbb{R} . Then $f = g$ a.e. and g is continuous, but f is discontinuous everywhere.

Theorem 4.21 (Egoroff). *Let (X, \mathcal{S}, μ) be a measure space and $\mu(X) < \infty$. Suppose $\{f_n\}$ is a sequence of measurable real valued functions converging pointwise to a real-valued measurable function. Then given $\epsilon > 0$, $\exists F \in \mathcal{S}$ with $\mu(F) < \epsilon$ such that $f_n \rightarrow f$ uniformly on F^c .*

Proof. Let $n, m \in \mathbb{N}$. Define

$$E_{n,m} = \bigcap_{i=n}^{\infty} \{x : |f_i(x) - f(x)| < \frac{1}{m}\}$$

$x \in E_{n,m} \implies \forall i \geq n, |f_i(x) - f(x)| < \frac{1}{m}$. Hence for each $m \in \mathbb{N}$,

$$E_{1,m} \subset E_{2,m} \subset \cdots \subset E_{n,m} \subset E_{n+1,m} \subset \cdots.$$

For $x \in X$ and $m \in \mathbb{N}$, $\exists n_m$ such that $n \geq n_m \implies |f_n(x) - f(x)| < \frac{1}{m}$.

$$\implies x \in E_{n_m,m} \implies X = \bigcup_{n=1}^{\infty} E_{n,m} \quad \forall m \in \mathbb{N}.$$

Now, $\mu(X) < \infty \implies \exists n_m$ such that

$$\mu(X \setminus E_{n_m,m}) = \mu(X) - \mu(E_{n_m,m}) < \frac{\epsilon}{2^m}.$$

Let

$$F = \bigcup_{m=1}^{\infty} (X \setminus E_{n_m,m}).$$

Then $\mu(F) < \infty$ and

$$F^c = \bigcap_{m=1}^{\infty} E_{n_m,m}.$$

Given $\eta > 0$ choose m such that $\frac{1}{m} < \eta$. Since $x \in E_{n_m,m}$, $\forall n \geq n_m$,

$$|f_n(x) - f(x)| < \frac{1}{m} < \eta \quad \forall x \in F^c.$$

□

Remark 4.22. Egoroff's theorem is not true if $\mu(X) = \infty$. Here is a counter example.

Example 4.23. Let $X = \mathbb{N}$, $\mathcal{S} = \mathcal{P}(\mathbb{N})$ and μ be the counting measure. The only measure zero set in this measure space is the empty set. Hence if Egoroff's theorem were true, pointwise convergence would imply uniform convergence everywhere. Let $f_n = \chi_{\{1, 2, \dots, n\}}$. Then pointwise, $f_n \rightarrow f \equiv 1$, a constant. But for every $n \in \mathbb{N}$ and $m > n$, $f_n(m) = 0$ and $f_m(m) = 1$. Hence $f_n \not\rightarrow f$ uniformly.

Definition 4.24. A sequence f_n is said to converge to f almost uniformly if $\forall \epsilon > 0, \exists F \in \mathcal{S}$ such that $\mu(F) < \epsilon$ and $f_N \rightarrow f$ uniformly on F^c .

Theorem 4.25. $f_n \rightarrow f$ almost uniformly $\implies f_n \rightarrow f$ pointwise almost everywhere.

Proof. For each $m \in \mathbb{N}, \exists F_m \in \mathcal{S}$ with $\mu(F_m) < \frac{1}{m}$ such that $f_n \rightarrow f$ uniformly on F_m^c . Let

$$F = \bigcap_{m=1}^{\infty} F_m.$$

Then $\mu(F) = 0$.

$$F^c = \bigcap_{m=1}^{\infty} F_m^c.$$

Hence $f_n(x) \rightarrow f(x) \forall x \in F^c$, i.e., $f_n \rightarrow f$ almost everywhere. \square

Theorem 4.26 (Lusin). Let f be a Lebesgue measurable function on $[a, b] \subset \mathbb{R}$. Then given $\epsilon > 0, \exists$ a continuous function ϕ such that $\mu(\{x : f(x) \neq \phi(x)\}) < \epsilon$ and $\sup |\phi| \leq \sup |f|$.

Proof. We first prove the theorem for characteristic functions. Let $f = \chi_E, E \in \mathcal{S}$. Then $\exists U$ open, F closed such that $F \subset E \subset U$ and $\mu(U \setminus E) < \frac{\epsilon}{2}$ and $\mu(E \setminus F) < \frac{\epsilon}{2}$. By Urysohn's lemma, $\exists \phi$ continuous function with $0 \leq \phi \leq 1$ and

$$\phi = \begin{cases} 1, & \text{on } F \\ 0, & \text{on } U^c \end{cases}$$

Hence $\{x : f(x) \neq \phi(x)\} \subset U \setminus F$ and $\mu(U \setminus F) < \epsilon$. Next, let f be a simple function, i.e.,

$$f = \sum_{i=1}^n \alpha_i \chi_{A_i}.$$

For each $i, \exists \phi_i$ such that $\mu(\{x : \phi_i \neq \chi_{A_i}\}) < \frac{\epsilon}{n}$. Let

$$\phi = \sum_{i=1}^n \alpha_i \phi_i.$$

Then ϕ is continuous and

$$\{x : \phi(x) \neq f(x)\} \subset \bigcup_{i=1}^n \{x : \phi_i(x) \neq f_i(x)\}.$$

Hence $\mu(\{x : \phi(x) \neq f(x)\}) < \epsilon$. Next we consider a non-negative measurable function. Then by Theorem 4.17, $\exists f_n \geq 0$ simple functions such that $f_n \nearrow f$. BY Egoroff's theorem, $\exists F$ with $\mu(F) < \frac{\epsilon}{4}$ and such that $f_n \rightarrow f$ uniformly on F^c . By regularity of the Lebesgue measure, $\exists C_0 \subset F \subset [a, b]$ compact such that $\mu(F^c \setminus C_0) < \frac{\epsilon}{4}$. Hence $\mu([a, b] \setminus C_0) < \frac{\epsilon}{2}$ and $f_n \rightarrow f$ uniformly on C_0 . Since each f_n is simple, $\exists \phi_n$ continuous such that $\mu(\{\phi_n \neq f_n\}) < \frac{\epsilon}{2^{n+1}}$. Hence $\exists C_n$ closed such that $\{\phi_n \neq f_n\} = [a, b] \setminus C_n$ and $\mu([a, b] \setminus C_n) < \frac{\epsilon}{2^{n+1}}$. Let $C = \bigcap_{n=0}^{\infty} C_n$. Then

$\mu([a, b] \setminus C) \leq \epsilon$. C is compact and ϕ_n is continuous on C for each n . Also, $\phi_n = f_n$ for each n on C . Hence ϕ_n converges uniformly on C to a continuous function ϕ , with $\phi = f$ on C . By Tietze extension theorem, ϕ can be extended to a continuous function on $[a, b]$. Hence, $\mu(\{\phi \neq f\}) \leq \mu([a, b] \setminus C) < \epsilon$. \square

Definition 4.27 (Convergence in measure). A sequence $\{f_n\}$ is said to converge to f in measure if

$$\forall \epsilon > 0, \lim_{n \rightarrow \infty} \mu(\{x : |f_n(x) - f(x)| \geq \epsilon\}) = 0.$$

$\{f_n\}$ is said to be Cauchy in measure if $\forall \epsilon > 0$ and $\delta > 0$, $\exists N$ such that $\forall n, m \geq N, \mu(\{x : |f_n(x) - f_m(x)| \geq \epsilon\}) < \delta$.

Proposition 4.28. Let $f_n \xrightarrow{\mu} f$ and $g_n \xrightarrow{\mu} g$. Then $\forall \alpha, \beta \in \mathbb{R}$, $\alpha f_n + \beta g_n \xrightarrow{\mu} \alpha f + \beta g$.

Proof.

$$|(\alpha f_n(x) + \beta g_n(x)) - (\alpha f(x) + \beta g(x))| \leq |\alpha||f_n(x) - f(x)| + |\beta||g_n(x) - g(x)|.$$

Hence

$$\mu(\{x : |(\alpha f_n(x) + \beta g_n(x)) - (\alpha f(x) + \beta g(x))| \geq \epsilon\}) \leq \mu(\{x : |f_n(x) - f(x)| \geq \frac{\epsilon}{2\alpha}\}) + \mu(\{x : |g_n(x) - g(x)| \geq \frac{\epsilon}{2\beta}\}).$$

\square

Proposition 4.29. Let $f_n \rightarrow f$. Then $|f_n| \rightarrow |f|$.

Proof. The proof follows since $\|f_n(x) - f(x)\| \leq |f_n(x) - f(x)|$. \square

Proposition 4.30. Let $\mu(X) < \infty$ and f_n, f be real valued functions. Suppose $f_n \xrightarrow{\mu} f$ and $g_n \xrightarrow{\mu} g$. Then $f_n g_n \xrightarrow{\mu} f g$.

Proof. It suffices to show that $f_n^2 \xrightarrow{\mu} f^2$. Suppose first that $f_n \xrightarrow{\mu} 0$.

$$\mu(\{x : |f_n(x)|^2 \geq \epsilon\}) \leq \mu(\{x : |f_n(x)| \geq \sqrt{\epsilon}\}).$$

In general, if $f_n \xrightarrow{\mu} f$, then $f_n - f \xrightarrow{\mu} 0$. Let $E_n = \{x : |f(x)| > n\}$. Then $E_n \searrow \emptyset$. Since $\mu(X) < \infty$, $\lim_{n \rightarrow \infty} \mu(E_n) = 0$. Given $\delta > 0$, choose $m \in \mathbb{N}$ such that $\mu(E_n) < \delta \forall n \geq m$. On $E_m^c, |f| \geq m$. Now,

$$\{x : |f_n(x)f(x) - f^2(x)| \geq \epsilon\} = \{x : |f_n f(x) - f^2(x)| \geq \epsilon\} \cap E_m \cup \{x : |f_n f(x) - f^2(x)| \geq \epsilon\} \cap E_m^c.$$

On $E_m^c, |f_n f - f^2| \leq |f||f_n - f| \leq m|f_n - f|$. Hence, $|f_n - f| \geq \frac{\epsilon}{m}$ on the set $E_m^c \cap \{x : |f_n f - f^2| \geq \epsilon\}$. Hence,

$$\mu(\{x : |f_n f - f^2| \geq \epsilon\}) < \delta + \mu(\{x : |f_n - f| \geq \frac{\epsilon}{m}\}).$$

Hence $f_n f \xrightarrow{\mu} f^2$. Now $(f_n - f)^2 = f_n^2 - 2f_n f + f^2 = (f_n^2 - f^2) + 2(-f_n f + f^2)$. Hence $f_n^2 - f^2 \xrightarrow{\mu} 0$. \square

Example 4.31. Proposition 4.30 is not true if $\mu(X) = \infty$. Let $X = \mathbb{N}, \mathcal{S} = \mathcal{P}(\mathbb{N})$ and μ be the counting emasure. Let

$$f_n(k) = \begin{cases} \frac{1}{n}, & 1 \leq k \leq n \\ 0, & k > n \end{cases}$$

Then $f_n \rightarrow 0$ uniformly, hence $f_n \xrightarrow{\mu} 0$. (This is true since $\{x : |f_n(x) - f(x)| \geq \epsilon\} = \emptyset$ for n large. Next, let $g(x) \equiv n$. Then for $\epsilon < 1$, $f_n g(n) = 1$. Hence $\mu(\{x : |f_n g(x)| \geq \epsilon\}) \geq 1 \forall n$. Hence $f_n g$ does not converge to 0 in measure.)

Proposition 4.32. *Let $\mu(X) < \infty$. Suppose $\{f_n\}$ is a sequence of real valued functions and $f_n \rightarrow f$ almost everywhere, f a real valued function. Then $f_n \xrightarrow{\mu} f$.*

Proof. Let $D = \{x : f_n(x) \not\rightarrow f(x)\}$. Then $\mu(D) = 0$.

Let $\epsilon > 0$ and $E_m(\epsilon) = \{x : |f_m(x) - f(x)| \geq \epsilon\}$. Then

$$\begin{aligned} D &= \bigcup_{\epsilon \geq 0} \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_m(\epsilon) \\ &= \bigcup_{\epsilon \geq 0} \limsup_{n \rightarrow \infty} E_n(\epsilon). \end{aligned}$$

Since $\mu(D) = 0$, $\forall \epsilon > 0$, $\mu(\{\limsup_{n \rightarrow \infty} E_n(\epsilon)\}) = 0$. Since $\mu(X) < \infty$,

$$\begin{aligned} 0 &= \mu(\{\limsup_{n \rightarrow \infty} E_n(\epsilon)\}) \\ &\geq \limsup \mu(E_n(\epsilon)) \\ &\geq \liminf \mu(E_n(\epsilon)) \\ &\geq 0. \end{aligned}$$

Hence $\lim_{n \rightarrow \infty} \mu(E_n(\epsilon)) = 0$. That is, $f_n \xrightarrow{\mu} f$. \square

Example 4.33. Proposition 4.32 is not true if $\mu(X) = \text{infty}$. Let $X = \mathbb{N}$, $\mathcal{S} = \mathcal{P}(\mathbb{N})$ and μ be the counting measure. $f_n \xrightarrow{\mu} f \iff f_n \rightarrow f$ uniformly. Let $f_n = \chi_{\{1, 2, \dots, n\}}$. Then $f_n \rightarrow f \equiv 1$ pointwise, but not uniformly.

Example 4.34. Convergence in measure does not imply convergence almost everywhere, even in a finite measure space. Let $X = [0, 1]$, μ be the Lebesgue measure. Let $\chi_n^i = \chi_{[\frac{i-1}{n}, \frac{i}{n}]}$. Let $x \in [0, 1]$ and $n \in \mathbb{N}$. Consider the sequence $\{\chi_1^1, \chi_2^1, \chi_2^2, \chi_3^1, \chi_3^2, \chi_3^3, \dots\}$. Then $\exists i$ such that $\chi_n^i(x) = 1$ and $\exists j$ such that $\chi_n^j(x) = 0$. Hence this sequence does not converge for any x . But it converges in measure since $\mu(\{x : |\chi_n^i(x)| \geq \epsilon\}) = \frac{1}{n} \rightarrow 0$.

Lemma 4.35 (Borel-Cantelli). *Let $\{E_k\}$ be a sequence of measurable sets such that $\sum_{i=1}^{\infty} \mu(E_i) < \infty$. Then except on a set of measure 0, every x belongs to at most finitely many E_k s.*

Proof. Let $E = \{x : x \text{ belongs to infinitely many } E_k\}$. Then $E = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} E_m$.

Hence $\mu(E) \leq \mu(\bigcup_{m=n}^{\infty} E_m) \leq \sum_{m=n}^{\infty} \mu(E_m) \forall n$. Hence $\mu(E) = 0$. \square

Proposition 4.36. *Let $f_n \xrightarrow{\mu} f$. Then there exists a subsequence which converges to f almost everywhere.*

Proof. Let $E_{n,m} = \{x : |f_n(x) - f(x)| \geq \frac{1}{m}\}$. Then $\forall m, \exists n_0(m)$ such that $\forall n \geq n_0(m)$, $\mu(E_{n,m}) < \frac{1}{2^m}$. Then $\sum_{m=1}^{\infty} \mu(E_{n_0(m), m}) < \sum_{m=1}^{\infty} \frac{1}{2^m} < \infty$. By the Borel-Cantelli lemma, $\exists E$ with $\mu(E) = 0$ such that $\forall x \in E^c$, x belongs to at most

finitely many sets $E_{n_0(m),m}$. That is, $\forall x \in E^c, \exists N$ (that depends on x) such that if $m \geq N$, then $x \notin E_{n_0(m),m}$. That is, $\forall m \geq N, |f_{n_0(m)}(x) - f(x)| < \frac{1}{m}$. That is, $f_{n_0(m)}(x) \rightarrow f(x) \forall x \in E^c, \mu(E) = 0$. \square

Proposition 4.37. *If $f_n \xrightarrow{\mu} f$, then $\{f_n\}$ is Cauchy in measure. If also $f_n \xrightarrow{\mu} g$, then $f = g$ almost everywhere.*

Proof. The proof of the first part follows since $\{x : |f_n(x) - f_m(x)| \geq \epsilon\} \subseteq \{x : |f_n(x) - f(x)| \geq \frac{\epsilon}{2}\} \cup \{x : |f_m(x) - f(x)| \geq \frac{\epsilon}{2}\}$. Suppose $f_n \xrightarrow{\mu}$ to f and g . Then for $\epsilon > 0$, $\mu(\{x : |f_n(x) - g(x)| \geq \epsilon\}) \leq \mu(\{x : |f_n(x) - f(x)| \geq \frac{\epsilon}{2}\}) + \mu(\{x : |f_n(x) - g(x)| \geq \frac{\epsilon}{2}\}) \forall n$. Taking the limit as $n \rightarrow \infty$, we get $\mu(\{x : |f(x) - g(x)| \geq \epsilon\}) = 0 \forall \epsilon > 0$. \square

Proposition 4.38. *Suppose $\{f_n\}$ is Cauchy in measure. Then \exists a subsequence such that $\{f_{n_k}\}$ is almost uniformly Cauchy.*

Proof. Given $k \in \mathbb{N}$, $\exists n(k)$ such that $\forall n, m \geq n(k)$, $\mu(\{x : |f_n(x) - f_m(x)| \geq \frac{1}{2^k}\}) < \frac{1}{2^k}$. Let

$$\begin{aligned} n_1 &= n(1) \geq 1 \\ n_2 &= \max \{n_1 + 1, n(2)\} \geq 2 \\ n_3 &= \max \{n_2 + 1, n(3)\} \geq 3 \end{aligned}$$

and so on. Let $E_k = \{x : |f_{n_k}(x) - f_{n_{k+1}}(x)| \geq \frac{1}{2^k}\}$. Then $\mu(E_k) < \frac{1}{2^k}$. Given $\delta > 0$, choose k such that $\frac{1}{2^{k-1}} < \delta$. Let $F = E_k \cup E_{k+1} \cup \dots$. Then $\mu(F) \leq \sum_{i=1}^{\infty} \mu(E_i) = \frac{1}{2^{k-1}} < \delta$. Let $\epsilon > 0$. Choose $i \geq k$ such that $\frac{1}{2^{i-1}} < \epsilon$. Let $i \leq l \leq m, x \in F^c = \bigcap_{j=k}^{\infty} E_j^c$. Then

$$\begin{aligned} |f_{n_l}(x) - f_{n_m}(x)| &\leq \sum_{j=l}^{m-1} |f_{n_j}(x) - f_{n_{j+1}}(x)| \\ &< \sum_{j=l}^{\infty} \frac{1}{2^j} \\ &= \frac{1}{2^{l-1}} \\ &< \frac{1}{2^{i-1}} \\ &< \epsilon. \end{aligned}$$

Hence $\{f_{n_k}\}$ is Cauchy on F^c and $\mu(F) < \delta$. \square

Proposition 4.39. *Suppose $\{f_n\}$ is Cauchy in measure. Then there exists f measurable such that $f_n \xrightarrow{\mu} f$.*

Proof. By Proposition 4.1, let $\{f_{n_k}\}$ be a subsequence which is almost uniformly Cauchy. Then $\{f_{n_k}\}$ is Cauchy almost everywhere. Hence there exists a measurable function f such that $f_{n_k} \rightarrow f$ almost everywhere. But this implies that $f_{n_k} \rightarrow f$ almost uniformly. Now, $\{x : |f_n(x) - f(x)| \geq \epsilon\} \subseteq \{x : |f_n(x) - f_{n_k}(x)| \geq \frac{\epsilon}{2}\} \cup \{x : |f_n(x) - f(x)| \geq \frac{\epsilon}{2}\}$. Let $\eta > 0$. Then $\exists N_1 \in \mathbb{N}$ such that $n, n_k \geq N_1 \Rightarrow \mu(\{x : |f_n(x) - f_{n_k}(x)| \geq \epsilon\}) < \frac{\eta}{2}$ since $\{f_n\}$ is Cauchy in measure. Also, $f_{n_k} \rightarrow f$ almost

uniformly implies that there exists a set E of measure less than $\frac{\eta}{2}$ and $N_2 \in \mathbb{N}$ such that $\forall n_k \geq N_2, |f_{n_k}(x) - f(x)| < \epsilon$ on E^c . That is, $\forall n_k \geq N_2, \{x : |f_{n_k}(x) - f(x)| \geq \epsilon\} \subset E$. Take $N = \max\{N_1, N_2\}$. Then $\forall n \geq N, \mu(\{x : |f_n(x) - f(x)| \geq \epsilon\}) < \eta$. Hence $f_n \xrightarrow{\mu} f$. \square

Proposition 4.40. *Suppose $f_n \rightarrow f$ almost uniformly. Then $f_n \xrightarrow{\mu} f$.*

Proof. Let $\epsilon, \delta > 0$. Then $\exists F, \mu(F) < \delta$ such that $f_n \rightarrow f$ uniformly on F^c . Then $\exists n_0(\epsilon)$ such that $\forall n \geq n_0(\epsilon)$ and $\forall x \in F^c, |f_n(x) - f(x)| < \epsilon$. That is, $\forall n \geq n_0(\epsilon), \{x : |f_n(x) - f(x)| \geq \epsilon\} \subseteq F$. Hence $\mu(\{x : |f_n(x) - f(x)| \geq \epsilon\}) < \delta$. Hence $\lim_{n \rightarrow \infty} \mu(\{x : |f_n(x) - f(x)| \geq \epsilon\}) = 0$. That is, $f_n \xrightarrow{\mu} f$. \square

Finally we have the following implications:

$$\begin{aligned} \text{Convergence almost everywhere} &\xrightarrow[\text{Egoroff}]{\mu(X) < \infty} \text{Convergence almost uniformly} \Rightarrow \text{Convergence almost everywhere.} \\ \text{Convergence almost everywhere} &\xrightarrow{\mu(X) < \infty} \text{Convergence in measure} \xrightarrow{\text{subsequence}} \text{Convergence almost everywhere.} \\ \text{Convergence in measure} &\xrightarrow{\text{subsequence}} \text{Convergence almost uniformly} \Rightarrow \text{Convergence in measure.} \end{aligned}$$

5. INTEGRATION

Let (X, \mathcal{S}, μ) be a measure space. Suppose ϕ is a function on X such that its range is a finite set $\{\alpha_1, \dots, \alpha_n\}$ with each $\alpha_i \geq 0$. Let $A_i = \phi^{-1}(\alpha_i)$. Then $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$ where the A_i s are disjoint. Such a function is called a simple function.

Define the integral of ϕ as $\int_X \phi d\mu = \sum_{i=1}^n \alpha_i \mu(A_i)$.

If $\phi = \sum_{j=1}^m \beta_j \chi_{B_j}$, where the B_j s are disjoint, then each B_j is contained in some A_i and in the case $\beta_j = \alpha_i$. $A_i = \bigcup_{B_j \subset A_i} B_j$. Hence $\mu(A_i) = \sum_{B_j \subset A_i} \mu(B_j)$. Hence $\sum_{i=1}^n \alpha_i \mu(A_i) = \sum_{j=1}^m \beta_j \mu(B_j)$.

Now, let us consider the case of general E_i which need not be disjoint. Suppose $\phi = \sum_{i=1}^N c_i \chi_{E_i}$. Let $A_1, \dots, A_n \subset X$. Let $A^\epsilon = \begin{cases} A, \epsilon = 1 \\ A^c, \epsilon = -1 \end{cases}$

Let $\epsilon = (\epsilon_1, \dots, \epsilon_n)$, $\epsilon_i = \pm 1$ and $\epsilon_0 = (-1, \dots, -1)$. Let $A_\epsilon = \bigcap_{i=1}^n 6nA_i^{\epsilon_i}$, $A_{\epsilon_0} = \bigcap_{i=1}^n A_i^c = \bigcup_{i=1}^n (A_i)^c$. Now $\epsilon = \eta \iff \epsilon_i = \eta_i \forall i$. $\epsilon \neq \eta \Rightarrow A_\epsilon \cap A_\eta = \emptyset$. We claim that $A_i = \bigcup_{\epsilon_i=1 \text{ and } \epsilon \neq \epsilon_0} A_\epsilon$. Clearly, $\bigcup_{\epsilon_i=1} A_\epsilon \subset A_i$. Conversely, if $x \in A_i$. Let $\epsilon_k = \begin{cases} +1, x \in A_k \text{ (Hence } \epsilon_i = 1) \\ -1, x \notin A_k. \end{cases}$

Let $\epsilon = (\epsilon_k)$. Then $x \in A_\epsilon$. A_ϵ are disjoint. $\phi = \sum_{i=1}^m c_i \chi_{E_i}$. Now, $E_i = \bigcup_{\epsilon_i=1 \text{ and } \epsilon \neq \epsilon_0} E_\epsilon$, where the E_ϵ are disjoint. Hence $\chi_{E_i} = \sum_{\epsilon_i=1 \text{ and } \epsilon \neq \epsilon_0} \chi_{E_\epsilon}$. Hence $\phi = \sum_{i=1}^m c_i \sum_{\epsilon_i=1 \text{ and } \epsilon \neq \epsilon_0} \chi_{E_\epsilon} = \sum_{\epsilon \neq \epsilon_0} \sum_{i=1}^m \chi_{E_\epsilon}$.

Call $\sum_{i=1, \epsilon_i=1}^m c_i$ as $c(\epsilon)$. We now have a disjoint partition. Hence, by definition,

$$\begin{aligned} \int_X \phi d\mu &= \sum_{\epsilon \neq \epsilon_0} c(\epsilon) \mu(E_\epsilon) \\ &= \sum_{\epsilon \neq \epsilon_0} \left(\sum_{i=1, \epsilon_i=1}^m c_i \right) \mu(E_\epsilon) \\ &= \sum_{i=1}^m c_i \sum_{\epsilon_i=1} \mu(E_\epsilon) \\ &= \sum_{i=1}^m c_i \mu(E_i). \end{aligned}$$

So we have proved that the definition holds even when E_i are not disjoint. If $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$ and $E \subset X$, then $\int_E \phi d\mu = \sum_{i=1}^n \alpha_i \mu(A_i \cap E)$. This can be shown to be equal to $\int_X \phi \chi_E d\mu$.

Now, let $f \geq 0$ be a measurable function. Let $E \subset X$. Define $\int_E f d\mu = \sup_{\phi \text{ simple, } 0 \leq \phi \leq f} \int_E \phi d\mu$. It can be seen that the two definitions of integration coincide for simple functions.

Proposition 5.1. *Let $E \subseteq X$. Then*

- (1) $0 \leq f \leq g \Rightarrow \int_E f d\mu \leq \int_E g d\mu$.
- (2) $A \subseteq B, f \geq 0 \Rightarrow \int_A f d\mu \leq \int_B f d\mu$.
- (3) $f \geq 0, 0 \leq c < \infty \Rightarrow \int_E cf d\mu = c \int_E f d\mu$.
- (4) $f \equiv 0 \text{ on } E \Rightarrow \int_E f d\mu$.
- (5) $\mu(E) = 0, f \geq 0 \Rightarrow \int_E f d\mu = 0$.
- (6) $\int_E f d\mu = \int_X f \chi_E d\mu$.

Proposition 5.2. (1) *Let $\phi \geq 0$ be simple. Define $\nu(E) = \int_E \phi d\mu$, $E \in \mathcal{S}$.*

Then ν is a measure on \mathcal{S} .

- (2) *If $\phi, \psi \geq 0$ are simple functions, then $\int_X (\phi + \psi) d\mu = \int_X \phi d\mu + \int_X \psi d\mu$.*

Proof. (1) It is clear that $\nu \geq 0$ and $\nu(\emptyset) = 0$. We need only prove countable additivity. Let $E = \bigcup_{i=1}^{\infty} E_i$, disjoint union. Let $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$. Then

$$\begin{aligned}\nu(E) &= \int_E \phi d\mu \\ &= \sum_{i=1}^n \alpha_i \mu(A_i \cap E) \\ &= \sum_{i=1}^n \alpha_i \sum_{j=1}^{\infty} \mu(A_i \cap E_j) \\ &= \sum_{j=1}^{\infty} \sum_{i=1}^n \alpha_i \mu(A_i \cap E_j) \\ &= \sum_{j=1}^{\infty} \int_{E_j} \phi d\mu \\ &= \sum_{j=1}^{\infty} \nu(E_j).\end{aligned}$$

(2) Let $\phi = \sum_{i=1}^n \alpha_i \chi_{A_i}$ and $\psi = \sum_{j=1}^m \beta_j \chi_{B_j}$. Let $E_{ij} = A_i \cap B_j$. Then

$$\begin{aligned}\int_{E_{ij}} (\phi + \psi) d\mu &= (\alpha_i + \beta_j) \mu(E_{ij}) \\ &= \int_{E_{ij}} \phi d\mu + \int_{E_{ij}} \psi d\mu.\end{aligned}$$

Since X is the disjoint union of sets of the form E_{ij} , the result follows from (1).

□

Theorem 5.3 (Lebesgue Monotone Convergence). *Let $\{f_n\}$ be a sequence of non-zero measurable functions such that*

- (1) $0 \leq f_1(x) \leq f_2(x) \leq \dots \forall x$
- (2) $f_n \rightarrow f$ pointwise almost everywhere.

Then $\int_X f_n d\mu \rightarrow \int_X f d\mu$.

Proof. Since $f_n \leq f \quad \forall n$, by (1) of Proposition 5.1, $\int_X f_n d\mu \leq \int_X f d\mu \quad \forall n$. Let $\alpha = \sup_n \int_X f_n d\mu$. Then $\alpha \leq \int_X f d\mu$. Now, let ϕ be a simple function such that $0 \leq \phi \leq f$. Let $0 < c < 1$. Define $E_n = \{x : f_n(x) \geq c\phi(x)\}$. Then $E_1 \subset E_2 \subset \dots$. If $f(x) = 0$, then $\phi(x) = 0 \Rightarrow x \in E_1$. If $f(x) > 0$, then $c\phi(x) < f(x)$. Since $f_n(x) \rightarrow f(x)$, $\exists n$ such that $c\phi(x) \leq f_n(x) \leq f(x)$. Hence $x \in E_n$. So $X = \bigcup_{n=1}^{\infty} E_n$. Now $\int_X f_n d\mu \geq \int_{E_n} f_n d\mu \geq c \int_{E_n} \phi d\mu = c\nu(E_n)$. where ν is a measure as defined

in Proposition 5.2. Hence $\alpha \geq c \lim_{n \rightarrow \infty} \nu(E_n) = c\nu(X) = c \int_X \phi d\mu$. Since this is true for every simple function ϕ such that $0 \leq \phi \leq f$, we get $\alpha \geq c \int_X f d\mu$. As $c \rightarrow \infty$, $\alpha \geq \int_X f d\mu$. Hence $\lim_{n \rightarrow \infty} \int_X f_n d\mu = \sup_n \int_X f_n d\mu = \int_X f d\mu$. \square

Proposition 5.4. *Let $f_n \geq 0$ be measurable. Then $f(x) = \sum_{n=1}^{\infty} f_n(x)$ is measurable and non-negative. Further, $\int_X f d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$.*

Proof. Let $\phi_n^1 \nearrow f_1, 0 \leq \phi_n^1$ simple, and $\phi_n^2 \nearrow f_2, 0 \leq \phi_n^2$, simple. Then $\phi_n^1 + \phi_n^2 \nearrow f_1 + f_2$. Since $\int_X (\phi_n^1 + \phi_n^2) d\mu = \int_X \phi_n^1 d\mu + \int_X \phi_n^2 d\mu$, we get $\int_X (f_1 + f_2) d\mu = \int_X f_1 d\mu + \int_X f_2 d\mu$. By induction, $\int_X (f_1 + \cdots + f_n) d\mu = \sum_{i=1}^n \int_X f_i d\mu$. Let $g_n = \sum_{i=1}^n f_i$. Then $g_n \geq 0$ and $g_n \nearrow f$. By the monotone convergence theorem, $\int_X f d\mu = \sum_{i=1}^{\infty} \int_X f_i d\mu$. \square

Example 5.5. Let $X = \mathbb{N}, \mathcal{S} = \mathcal{P}(\mathbb{N})$ and μ be the counting measure. Let $E = \{n_1, \dots, n_k\}$ be a finite set. Let $f : X \rightarrow \mathbb{R}$ a be a non-negative function. It is then a sequence. $f = \sum_{i=1}^k f(n_i) \chi_{\{n_i\}}$. Then $\int_E f d\mu = \sum_{i=1}^k f(n_i)$. Suppose $f \geq 0$ on \mathbb{N} . Then we can think of $f_n = f \upharpoonright \{1, \dots, n\}$. Then $f_n \nearrow f$. By the monotone convergence theorem,

$$\int_X f d\mu = \sum_{n=1}^{\infty} f(n).$$

Example 5.6. Fix $x_0 \in X$. Let

$$\delta_{x_0}(E) = \begin{cases} 1, & , x_0 \in E \\ 0, & x_0 \notin E \end{cases}$$

Let $\phi = \sum_{i=1}^n \alpha_i \chi_{E_i}$, E_i disjoint. Then x_0 belongs to at most one E_i . In this case, $\int_X \phi d\mu = \alpha_i$, i.e., $\int_X \phi d\mu = \phi(x_0)$.

For $f \geq 0$, consider a sequence of simple functions $\{\phi_n\}$ that increase to f . Then $\int_X f d\mu = \lim_{n \rightarrow \infty} \int_X \phi_n d\mu = \lim_{n \rightarrow \infty} \phi_n(x_0) = f(x_0)$.

Example 5.7. Let $\{a_{ij}\}$ be a double sequence of non-negative numbers. Then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

Let $X = \mathbb{N}, \mathcal{S} = \mathcal{P}(\mathbb{N})$ and μ be the counting measure. Let $f_i(j) = a_{ij}$ and $f = \sum_{i=1}^{\infty} f_i$. By Proposition 5.4,

$$\int_X f d\mu = \sum_{i=1}^{\infty} \int_X f_i d\mu.$$

That is,

$$\sum_{j=1}^{\infty} f(j) = \sum_{i=1}^{\infty} \int_X f_i d\mu.$$

Hence

$$\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} f_i(j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_i(j).$$

Example 5.8. Consider $I = \int_0^1 \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$. Taking the transformation $y = \sin^{-1} x$, we get $I = \frac{\pi^2}{8}$.

Now, the Taylor expansion of $\sin^{-1} x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 2}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots$. By Proposition 5.4, we get

$$\begin{aligned} I &= \int_0^1 \frac{x}{\sqrt{1-x^2}} + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots 2n} \frac{1}{2n+1} \int_0^1 \frac{x^{2n+1}}{\sqrt{1-x^2}} dx \\ &= 1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots 2n} \frac{1}{2n+1} \frac{2n \cdot (2n-1) \cdots 2}{(2n+1) \cdot (2n-1) \cdots 3} \\ &= \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \end{aligned}$$

Hence $\frac{\pi^2}{8} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$. If $S = \sum_{n=1}^{\infty}$, then we get $S = \frac{\pi^2}{6}$.

Theorem 5.9 (Fatou's Lemma). *Let $f_n \geq 0$ be a sequence of measurable functions. Then*

$$\int_X (\liminf_{n \rightarrow \infty} f_n) d\mu \leq \liminf_{n \rightarrow \infty} \int_X f_n d\mu.$$

Proof. Let $g_k(x) = \inf_{i \geq k} f_i(x)$. Then $g_k \geq 0$ and $\lim_{k \rightarrow \infty} g_k = \liminf_n f_n$. By the Monotone convergence theorem, we get

$$\int_X (\liminf_{n \rightarrow \infty} f_n) d\mu = \lim_{n \rightarrow \infty} \int_X g_k d\mu.$$

But

$$\int_X g_k d\mu \leq \inf_{i \geq k} \int_X f_i d\mu.$$

Hence the result follows. \square

Example 5.10. Strict inequality can occur in Fatou's lemma. Let $X = \mathbb{R}$, μ be the Lebesgue measure. Let $f_n = \chi_{[n, n+1]}$. Then $\lim_{n \rightarrow \infty} f_n(x) = 0 \forall x \in \mathbb{R}$, but $\int_X f_n d\mu = 1 \forall n$.

Proposition 5.11. *Let $f \geq 0$ be measurable. Define*

$$\nu(E) = \int_E f d\mu.$$

Then ν is a measure. Further, if $g \geq 0$,

$$\int_X g d\nu = \int_X fg d\mu.$$

The notation used is $d\nu = f d\mu$, or $\frac{d\nu}{d\mu} = f$.

Proof. Clearly, $\nu \geq 0$ and $\nu(\emptyset) = 0$. Suppose $E = \bigcup_{i=1}^{\infty} E_i$ disjoint union. Then $\nu(E) = \int_E f d\mu = \int_X f \chi_E d\mu$. Now, $\chi_E = \sum_{i=1}^{\infty} \chi_{E_i}$. Hence

$$\begin{aligned} \int_X f \chi_E d\mu &= \int_X \sum_{i=1}^{\infty} f \chi_{E_i} d\mu \\ &= \sum_{i=1}^{\infty} \int_X f \chi_{E_i} d\mu \\ &= \sum_{i=1}^{\infty} \int_{E_i} f d\mu \\ &= \sum_{i=1}^{\infty} \nu(E_i). \end{aligned}$$

Next, let $g = \chi_E$. Then

$$\begin{aligned} \int_X g d\nu &= \int_X \chi_E d\nu \\ &= \nu(E) \\ &= \int_E f d\mu \\ &= \int_X f \chi_E d\mu \\ &= \int_X fg d\mu. \end{aligned}$$

By linearity, the above also holds for simple functions, and by the Monotone convergence theorem, it holds for all positive measurable functions. \square

Example 5.12. Let $f \geq 0$ and $\int_X f d\mu = 0$. Then $f = 0$ almost everywhere. Let $E_n = \{x : f(x) \geq \frac{1}{n}\}$, Then $E = \{x : f(x) > 0\} = \bigcup_{n=1}^{\infty} E_n$. Now $0 = \int_X f d\mu \geq \int_{E_n} f_n d\mu \geq \frac{1}{n} \mu(E_n)$. Hence $\mu(E_n) = 0 \forall n \Rightarrow \mu(E) = 0$.

Definition 5.13. A function f is said to be integrable if $\int_X |f| d\mu < \infty$. A real-valued f can be written as $f^+ - f^-$, where $f^+, f^- \geq 0$. Hence we define the integral of f as follows:

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu.$$

Suppose f is a complex valued function. Then $f = u + iv$, where u, v are real-valued functions. Then $\int_X |f| d\mu < \infty \iff \int_X |u| d\mu < \infty$ and $\int_X |v| d\mu < \infty$.

Define

$$\int_X f d\mu = \int_X u d\mu + i \int_X v d\mu.$$

Theorem 5.14. Let f, g be complex integrable functions and $\alpha, \beta \in \mathbb{C}$. Then $\alpha f + \beta g$ is integrable and

$$\int_X \alpha f + \beta g \, d\mu = \alpha \int_X f \, d\mu + \beta \int_X g \, d\mu.$$

Proof. $|\alpha f + \beta g| \leq |\alpha| |f| + |\beta| |g| \Rightarrow \alpha f + \beta g$ is integrable. It suffices to show the following:

- (1) $\int_X (f + g) \, d\mu = \int_X f \, d\mu + \int_X g \, d\mu \forall f, g \text{ real}$
- (2) $\int_X \alpha f \, d\mu = \alpha \int_X f \, d\mu \forall \alpha \in \mathbb{C}$.

Let f, g be real valued and $h = f + g$. Then $h^+ - h^- = f^+ - f^- + g^+ - g^-$. That is, $h^+ + f^- + g^- = h^- + f^+ + g^+$, where each term is non-negative. Hence,

$$\int_X h^+ \, d\mu + \int_X f^- \, d\mu + \int_X g^- \, d\mu = \int_X h^- \, d\mu + \int_X f^+ \, d\mu + \int_X g^+ \, d\mu.$$

That is,

$$\int_X h^+ \, d\mu - \int_X h^- \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu + \int_X g^+ \, d\mu - \int_X g^- \, d\mu$$

as required. Next, let $\alpha \geq 0$. Then $\int_X \alpha f \, d\mu = \int_X (\alpha f)^+ - (\alpha f)^- \, d\mu = \int_X \alpha f^+ \, d\mu - \int_X \alpha f^- \, d\mu = \alpha (\int_X f^+ \, d\mu - \int_X f^- \, d\mu) = \alpha \int_X f \, d\mu$.

Now, $-f = f^- - f^+$. Hence $\int_X -f \, d\mu = \int_X f^- \, d\mu - \int_X f^+ \, d\mu = -\int_X f \, d\mu$.

Finally,

$$\begin{aligned} \int_X i f \, d\mu &= \int_X i(u + iv) \, d\mu \\ &= \int_X iu - v \, d\mu \\ &= - \int_X v \, d\mu + i \int_X u \, d\mu \\ &= i \left(\int_X u \, d\mu + i \int_X v \, d\mu \right) \\ &= i \int_X f \, d\mu. \end{aligned}$$

□

Theorem 5.15. $|\int_X f \, d\mu| \leq \int_X |f| \, d\mu$.

Proof. Let $\alpha = \int_X f \, d\mu$. Then $|\alpha| e^{i\theta} = \alpha$, for some $\theta \in [0, 2\pi]$. That is,

$$|\int_X f \, d\mu| = e^{-i\theta} \int_X f \, d\mu = \int_X e^{-i\theta} f \, d\mu. \quad (6)$$

Let $g = e^{-i\theta}f = u + iv$. But by (6), we get $\int_X g d\mu = \int_X e d\mu$. Also, $u \leq |u| \leq |g| = |f|$. Hence $|\int_X f d\mu| \leq \int_X |f| d\mu$. \square

Theorem 5.16 (Dominated Convergence Theorem). *Let $f_n \rightarrow f$ almost everywhere and suppose $|f_n| \leq g$ almost everywhere, where g is an integrable function. Then*

$$\lim_{n \rightarrow \infty} \int_X |f_n - f| d\mu = 0.$$

Hence,

$$\lim_{n \rightarrow \infty} \int_X f_n d\mu = \int_X f d\mu.$$

Proof. $\|f_n\| \leq g \forall n \Rightarrow |f| \leq g$. Hence $|f_n - f| \leq 2g$. Thus, $2g - |f_n - f| \geq 0$. By Fatou's lemma,

$$\int_X \lim_{n \rightarrow \infty} (2g - |f_n - f|) d\mu \leq \liminf_{n \rightarrow \infty} 2g - |f_n - f| d\mu.$$

Hence

$$\begin{aligned} \int_X 2g d\mu &\leq \liminf_{n \rightarrow \infty} \int_X 2g d\mu - \int_X |f_n - f| d\mu \\ &= \int_X 2g d\mu - \limsup_{n \rightarrow \infty} \int_X |f_n - f| d\mu. \end{aligned}$$

This implies that $\limsup_{n \rightarrow \infty} \int_X |f_n - f| d\mu \leq 0$, since g is integrable. Hence we get

$$0 \leq \liminf_{n \rightarrow \infty} \int_X |f_n - f| d\mu \leq \limsup_{n \rightarrow \infty} \int_X |f_n - f| d\mu \leq 0.$$

Hence

$$\lim_{n \rightarrow \infty} \int_X |f_n - f| d\mu = 0.$$

\square

Example 5.17. Consider $\mathbb{N}, \mathcal{P}(\mathbb{N})$ and the counting measure.

(1) Let

$$f_n(k) = \begin{cases} \frac{1}{n}, & 1 \leq k \leq n \\ 0, & k > n \end{cases}$$

Then $f_n \rightarrow 0$ uniformly, but $\int_{\mathbb{N}} f_n d\mu = 1 \forall n$. But in this case, f_n s are not bounded by an integrable function.

Let $f_n(k) = \begin{cases} \frac{1}{k}, & 1 \leq k \leq n \\ 0, & k > n \end{cases}$ Then $f_n \rightarrow f$, where $f(k) = \frac{1}{k} \forall k$, which is not integrable. However, by Montonece convergence theorem, $f_n \nearrow f$.

Theorem 5.18. *Let f be a bounded function on $[a, b]$. Then*

(1) If f is Riemann integrable, then it is Lebesgue integrable, and

$$\int_a^b f(x) dx = \int_{[a,b]} f d\mu$$

where μ is the Lebesgue measure.

(2) f is Riemann integrable iff f is continuous almost everywhere.

Proof. Let $\{P_k\}$ be a sequence of partitions of $[a, b]$ such that the mesh $\Delta P_k = \max_{1 \leq i \leq n} |x_k - x_{k-1}| \rightarrow 0$. Each P_{k+1} is a refinement of P_k . Let $P_k = \{a = x_0 < x_1 < \dots < x_n = b\}$. Define functions U_k, L_k as follows:

$$U_k(a) = L_k(a) = f(a)$$

and

$$U_k(x) = M_i$$

$$L_k(x) = m_i$$

if $x \in [x_{i-1}, x_i]$ and $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$ and $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$.

Now $\int_{[a,b]} U_k d\mu = U(P_k, f)$ and $\int_{[a,b]} L_k d\mu = L(P_k, f)$. Also,

$$U_1(x) \geq U_2(x) \geq \dots \geq f(x) \geq \dots \geq L_2(x) \geq L_1(x). \quad (7)$$

Since f is bounded, we have $\int_{[a,b]} U_1 d\mu < \infty$. Now, $U_k \rightarrow U \geq f$, $L_k \rightarrow L \leq f$,

and by the dominated convergence theorem, all the functions in (7) are integrable.

Further, $\int_{[a,b]} U_k d\mu \rightarrow \int_{[a,b]} U d\mu$ and $\int_{[a,b]} L_k d\mu \rightarrow \int_{[a,b]} L d\mu$. Since f is Riemann integrable,

$\int_{[a,b]} U_k d\mu = U(P_k, f) \rightarrow \int_a^b f(x) dx$ as $\Delta P_k \rightarrow 0$ and $\int_{[a,b]} L_k d\mu = L(P_k, f) \rightarrow$

$\int_a^b f(x) dx$ as $\Delta P_k \rightarrow 0$. Hence

$$\int_a^b f(x) dx = \int_{[a,b]} U d\mu \geq \int_{[a,b]} f d\mu \geq \int_{[a,b]} L d\mu = \int_a^b f(x) dx.$$

Hence, $\int_{[a,b]} f d\mu = \int_a^b f(x) dx$ if f is Riemann integrable. Also, $f = U = L$ almost everywhere. By further throwing away the partition points, f is continuous almost everywhere.

Conversely, if f is continuous almost everywhere, we get $f = U = L$ at all those points. f continuous at a point x implies that for $\epsilon > 0, \exists \delta > 0$ such that $|x - z| < \delta \Rightarrow |f(x) - f(z)| < \frac{\epsilon}{2}$. Choose k such that $\Delta P_k < \delta$. Take x a point that is not a partition point of $P_k = \{a = x_0^k < x_1^k < \dots < x_n^k = b\}$. Then $x \in [x_{i-1}^k, x_i^k]$ for some i . Now, for each $z \in [x_{i-1}^k, x_i^k]$, $|f(x) - f(z)| < \frac{\epsilon}{2}$. Hence $|M_i - f(x)| \leq \frac{\epsilon}{2}$ and $|m_i - f(x)| \leq \frac{\epsilon}{2}$. So, $|M_i - m_i| \leq \epsilon$. This, U_k, L_k tend to each other and $U = L = f$. If $f = U = L$, then by the dominated convergence theorem, $\int_{[a,b]} U_k d\mu \rightarrow \int_{[a,b]} f d\mu$ and $\int_{[a,b]} L_k d\mu \rightarrow \int_{[a,b]} f d\mu$. Hence,

$$\left| \int_{[a,b]} U_k d\mu - \int_{[a,b]} L_k d\mu \right| \rightarrow 0. \quad \square$$

Example 5.19. Let $X = [0, \infty)$ with Lebesgue measure. Let $f(x) = \frac{\sin x}{x}$. Then the Riemann integral of f exists and is finite (equal to $\frac{\pi}{2}$). However, f is not Lebesgue integrable, i.e., $\int_0^\infty \left| \frac{\sin x}{x} \right| dx = \infty$. $\int_0^\infty \left| \frac{\sin x}{x} \right| dx \geq \sum_{n=1}^{\infty} \int_{n\pi + \frac{\pi}{4}}^{n\pi + \frac{\pi}{2}} \left| \frac{\sin x}{x} \right| dx$. On $[n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{2}]$, $|\sin x| \geq \frac{1}{\sqrt{2}}$ and $x = |x| \leq n\pi + \frac{\pi}{2} = (2n+1)\frac{\pi}{2}$, hence $\frac{1}{|x|} \geq \frac{2}{\pi(2n+1)}$. Thus

$$\int_0^\infty \left| \frac{\sin x}{x} \right| dx \geq \sum_{n=1}^{\infty} \frac{\sqrt{2}}{\pi} \frac{1}{(2n+1)} \frac{\pi}{4} = \frac{1}{2\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{2n+1} = \infty.$$

Example 5.20. (1) Let $X = (0, 1)$ and $f(x) = \frac{1}{\sqrt{x}}$. Let

$$f_n(x) = \begin{cases} 0, & 0 < x < \frac{1}{n} \\ \frac{1}{\sqrt{x}}, & \frac{1}{n} < x < 1 \end{cases}$$

Then $\{f_n\}$ increases to f . By the monotone convergence theorem,

$$\begin{aligned} \int_0^1 f(x) dx &= \lim_{n \rightarrow \infty} \int_0^1 f_n(x) dx \\ &= \lim_{n \rightarrow \infty} \int_{\frac{1}{n}}^1 \frac{1}{\sqrt{x}} dx \\ &= \lim_{n \rightarrow \infty} [2\sqrt{x}]_{\frac{1}{n}}^1 \\ &= \lim_{n \rightarrow \infty} [2 - \frac{2}{\sqrt{n}}] \\ &= 2. \end{aligned}$$

(2) Let $X = (1, \infty)$ and $f(x) = \frac{1}{\sqrt{x}}$. Let

$$f_n(x) = \begin{cases} \frac{1}{\sqrt{x}}, & x \in (1, n) \\ 0, & x \in [n, \infty) \end{cases}$$

Then $\{f_n\}$ increases to f . Hence $\int_1^\infty \frac{1}{\sqrt{x}} dx = \lim_{n \rightarrow \infty} \int_1^n \frac{1}{\sqrt{x}} dx = \lim_{n \rightarrow \infty} [2\sqrt{x}]_1^n = \lim_{n \rightarrow \infty} [2\sqrt{n} - 2] = \infty$.

Example 5.21. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be integrable and $t \in \mathbb{R}$ be fixed. Then

$$\int_{-\infty}^{\infty} f(x+t) dx = \int_{-\infty}^{\infty} f(x) dx.$$

First, let $f = \chi_E$. Then

$$f(x+t) = \begin{cases} 1, & x+t \in E \\ 0, & x+t \notin E \end{cases} = \chi_{E-t}(x)$$

Hence

$$\int_{-\infty}^{\infty} f(x+t) dx = \mu(E-t) = \mu(E) = \int_{-\infty}^{\infty} f(x) dx.$$

By linearity, the result is true for simple functions, by the monotone convergence theorem for non-negative functions, and then by linearity for complex valued functions.

Example 5.22. Let $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$. Suppose

- (1) f is measurable with respect to x for each fixed t .
- (2) $|f(x, t)| \leq g(x)$, where g is integrable.
- (3) $f(x, t) \rightarrow \phi(x)$ as $t \rightarrow 0$.

Then

$$\lim_{t \rightarrow 0} \int_0^1 f(x, t) dx = \int_0^1 \phi(x) dx.$$

Proof. Let $t_n \rightarrow 0$. Let $\phi_n(x) = f(x, t_n)$. Then $\phi_n(x) \rightarrow \phi(x)$, and $|\phi(x)| \leq g(x)$, g integrable. By the dominated convergence theorem, $\int_0^1 \phi_n(x) dx \rightarrow \int_0^1 \phi(x) dx$. \square

Example 5.23. Let $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$. Suppose

- (1) f is measurable with respect to x for each fixed t .
- (2) f is continuous with respect to t for each fixed x .
- (3) $|f(x, t)| \leq g(x)$, where g is integrable.
- (4) $f(x, t) \rightarrow \phi(x)$ as $t \rightarrow 0$.

Further, suppose $\frac{\partial f}{\partial t}(x, t)$ exists for all $x, t \in [0, 1]$, is continuous with respect to t and $|\frac{\partial f}{\partial t}(x, t)| \leq M$. Let $h(t) = \int_0^1 f(x, t) dx$. Then h is differentiable and $\frac{dh}{dt} = \int_0^1 \frac{\partial f}{\partial t}(x, t) dx$. That is,

$$\frac{d}{dt} \int_0^1 f(x, t) dx = \int_0^1 \frac{\partial f}{\partial t}(x, t) dx.$$

Proof. $\frac{h(t+\tau)-h(t)}{\tau} = \int_0^1 \frac{f(x, t+\tau) - f(x, t)}{\tau} dx = \int_0^1 \frac{\partial f(x, t+\theta\tau)}{\partial t} dx$, by the mean value theorem. Now, $\frac{\partial f(x, t+\theta\tau)}{\partial t} \xrightarrow{\tau \rightarrow 0} \frac{\partial f}{\partial t}(x, t)$, and $|\frac{\partial f(x, t+\theta\tau)}{\partial t}| \leq M$. By the dominated convergence theorem, as $\tau_n \rightarrow 0$, we get $\frac{h(t+\tau_n)-h(t)}{\tau_n} \rightarrow \int_0^1 \frac{\partial f(x, t)}{\partial t} dx$. \square

6. DIFFERENTIATION

Theorem 6.1. Let $f : [a, b] \rightarrow \mathbb{R}$ be monotonically increasing. Then f is differentiable almost everywhere.

Theorem 6.2. Let f be monotonically increasing on $[a, b]$. Then

$$\int_a^b f'(t) dt \leq f(b) - f(a).$$

Before the proof, we do the following exercise.

Exercise 6.3. Let $f : \mathbb{R} \rightarrow \mathbb{R}$, t fixed. Then

$$\int_a^b f(x+t) dx = \int_{a+t}^{b+t} f(y) dy.$$

First, let $f = \chi_E$. $x \in [a, b], x+t \in E \Rightarrow x+t \in [a+t, b+t], x+t \in [a+t, b+t] \cap E$.

Hence $\int_a^b \chi_E(x+t) dx = \mu(E \cap [a+t, b+t]) = \int_{a+t}^{b+t} \chi_E dy$.

Proof. By Theorem 6.1, f is differentiable almost everywhere. Define

$$g(x) = \begin{cases} \lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, & \text{if the limit exists} \\ 0, & \text{otherwise} \end{cases}$$

Then $g = f'$ almost everywhere. Let $g_n = n(f(x+1/n) - f(x))$. Then $g_n \rightarrow f'$ almost everywhere and $g_n \geq 0$. By Fatou's lemma,

$$\int_a^b \liminf_{n \rightarrow \infty} g_n dt \leq \liminf_{n \rightarrow \infty} \int_a^b g_n(t) dt.$$

That is,

$$\int_a^b f'(t) dt \leq \liminf_{n \rightarrow \infty} \int_a^b g_n(t) dt.$$

Now,

$$\begin{aligned} \int_a^b g_n(t) dt &= n \left(\int_a^b f(t + \frac{1}{n}) dt - \int_a^b f(t) dt \right) \\ &= n \left(\int_{a+\frac{1}{n}}^{b+\frac{1}{n}} f(t) dt - \int_a^b f(t) dt \right) \\ &= n \left(\int_a^{b+\frac{1}{n}} f(t) dt - \int_a^{a+\frac{1}{n}} f(t) dt - \int_a^b f(t) dt \right) \\ &= n \left(\int_b^{b+\frac{1}{n}} f(t) dt + \int_a^b f(t) dt - \int_a^{a+\frac{1}{n}} f(t) dt - \int_a^b f(t) dt \right) \\ &= n \left(\int_b^{b+\frac{1}{n}} f(t) dt - \int_a^{a+\frac{1}{n}} f(t) dt \right) \\ &= f(b) - n \int_a^{a+\frac{1}{n}} f(t) dt. \end{aligned}$$

Hence $\int_a^b f'(t) dt \leq f(b) - \limsup_{n \rightarrow \infty} n \int_a^{a+\frac{1}{n}} f(t) dt$. Now, $\int_a^{a+\frac{1}{n}} f(t) dt \geq \frac{1}{n} f(a)$. Hence

$$\int_a^b f'(t) dt \leq f(b) - \limsup_{n \rightarrow \infty} n \cdot \frac{1}{n} f(a) = f(b) - f(a).$$

□

Remark 6.4. Strict inequality can hold in Theorem 6.2 as in the case of the Cantor function.

Definition 6.5. Let $f : [a, b] \rightarrow \mathbb{R}$, and $\mathcal{P} = \{a = x_0 < x_1 < \dots < x_n = b\}$ be a partition of $[a, b]$. Let $t(\mathcal{P}, f) = \sum_{i=1}^n |f(x_i) - f(x_{i-1})|$ and $T_a^b(f) = \sup_{\mathcal{P}} t(\mathcal{P}, f)$. $T_a^b(f)$ is called the total variation of f over $[a, b]$, and f is said to be of bounded variation over $[a, b]$ if $T_a^b(f) < \infty$.

Example 6.6. (1) If f is Lipschitz continuous, it is of bounded variation.
(2) Any monotonic function is of bounded variation with $T_a^b(f) = f(b) - f(a)$ or $f(a) - f(b)$.
(3) Any continuously differentiable function or differentiable function with bounded derivative is of bounded variation.

Example 6.7. Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & 0 \leq x \leq 1 \\ 0, & x = 0 \end{cases}$$

Note that f' is not bounded and blows up near 0. Claim: f is not of bounded variation. Let $\mathcal{P} = \{0, 1\} \cup \{\sqrt{\frac{2}{\pi(2k+1)}} : 0 \leq k \leq n\}$. For each k ,

$$\begin{aligned} |f(x_k) - f(x_{k-1})| &= \left| \frac{2}{\pi(2k+1)} \sin \frac{(2k+1)\pi}{2} - \frac{2}{\pi(2k-1)} \sin \frac{(2k-1)\pi}{2} \right| \\ &= \frac{2}{\pi(2k+1)} + \frac{2}{\pi(2k-1)} \\ &= \frac{2}{\pi} \left(\frac{2k-1+2k+1}{(2k-1)(2k+1)} \right) \\ &= \frac{2}{\pi} \frac{4k}{4k^2-1} \\ &\geq \frac{8}{\pi} \frac{k}{4k^2} \\ &= \frac{2}{\pi k}. \end{aligned}$$

Hence $\sum_{k=1}^n |f(x_k) - f(x_{k-1})| \geq \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k} \rightarrow \infty$ as $n \rightarrow \infty$.

Proposition 6.8. (1) If f is of bounded variation, then it is bounded.
(2) Let f, g are of bounded variation, the so are $f + g$ and fg .

Proof. (1) Let $t \in [a, b]$, and $P = \{a, t, b\}$. Then $|f(t) - f(a)| + |f(b) - f(t)| \leq T_a^b(f)$. Hence $|f(x)| \leq |f(a)| + T_a^b(f) < \infty$, $\forall t$.

(2) $f + g$ is of bounded variation by the triangular inequality. Consider fg .

$$\begin{aligned} |fg(x_i) - fg(x_{i-1})| &\leq |f(x_i)(g(x_i) - g(x_{i-1}))| + |(f(x_i) - f(x_{i-1}))g(x_{i-1})| \\ &\leq \|f\|_{\infty} |g(x_i) - g(x_{i-1})| + \|g\|_{\infty} |f(x_i) - f(x_{i-1})| \end{aligned}$$

□

For $r \in \mathbb{R}^+$, let $r^+ = \max \{r, 0\}$ and $r^- = -\min \{r, 0\}$. Then $r = r^+ - r^-$ and $|r| = r^+ + r^-$.

For a partition \mathcal{P} , Let

$$P(\mathcal{P}, f) = \sum_{i=1}^n (f(x_i) - f(x_{i-1}))^+$$

and

$$N(\mathcal{P}, f) = \sum_{i=1}^n (f(x_i) - f(x_{i-1}))^-.$$

Then $P(\mathcal{P}, f) + N(\mathcal{P}, f) = t(\mathcal{P}, f)$, and $P(\mathcal{P}, f) - N(\mathcal{P}, f) = f(b) - f(a)$. Let $P_a^b(f) = \sup_{\mathcal{P}} P(\mathcal{P}, f)$ and $N_a^b(f) = \sup_{\mathcal{P}} N(\mathcal{P}, f)$.

Proposition 6.9. *Let f be of bounded variation on $[a, b]$. Then*

$$T_a^b(f) = P_a^b(f) + N_a^b(f)$$

and

$$f(b) - f(a) = P_a^b(f) - N_a^b(f).$$

Proof. Fix a partition \mathcal{P} . Then $P_a^b - N_a^b = f(b) - f(a)$. Hence

$$P = N + (f(b) - f(a)) \leq N_a^b(f) + f(b) - f(a).$$

Hence

$$P_a^b(f) \leq N_a^b(f) + f(b) - f(a).$$

Similarly,

$$N_a^b(f) - P_a^b(f) \leq f(a) - f(b).$$

Hence

$$P_a^b(f) - N_a^b(f) = f(b) - f(a).$$

Now, $t(\mathcal{P}, f) = P(\mathcal{P}, f) + N(\mathcal{P}, f) \leq P_a^b(f) + N_a^b(f)$. Hence

$$T_a^b(f) \leq P_a^b(f) + N_a^b(f).$$

Now,

$$\begin{aligned} T_a^b(f) &\geq t(\mathcal{P}, f) \\ &= P(\mathcal{P}, f) + N(\mathcal{P}, f) \\ &= P(\mathcal{P}, f) + (P(\mathcal{P}, f) - (f(b) - f(a))) \\ &= 2P(\mathcal{P}, f) - (f(b) - f(a)) \\ &= 2P(\mathcal{P}, f) - (P_a^b(f) - N_a^b(f)). \end{aligned}$$

Taking the supremum over all partitions \mathcal{P} , we get

$$\begin{aligned} T_a^b(f) &\geq 2P_a^b(f) - P_a^b(f) + N_a^b(f) \\ &= P_a^b(f) + N_a^b(f). \end{aligned}$$

□

Consider the interval $[a, b]$ and $x, y \in (a, b)$ such that $x < y$. Then $[a, x], [a, y] \subseteq [a, b]$ and $T_a^x(f) \leq T_a^y(f)$, $P_a^x(f) \leq P_a^y(f)$, and $N_a^x(f) \leq N_a^y(f)$. Now, $f(a) - f(a) = P_a^x(f) - N_a^x(f)$. Hence $f(x) = (P_a^x(f) + f(a)) - N_a^x(f)$, where both $(P_a^x(f) + f(a))$ and $N_a^x(f)$ are monotonic. Hence we have the following theorem:

Theorem 6.10. *f is of bounded variation on $[a, b]$ iff f is the difference of two monotonically increasing functions.*

Corollary 6.11. *If f is of bounded variation, then f' exists almost everywhere.*

Proposition 6.12. *If f is of bounded variation, then*

$$\int_a^b |f'| dx \leq T_a^b(f).$$

If f is continuously differentiable, then

$$\int_a^b |f'| dx = T_a^b(f).$$

Proof. We have $f(x) - f(a) = P_a^x(f) - N_a^x(f)$. Hence $f'(x) = P_a^x(f)' - N_a^x(f)'$. Hence $|f'(x)| = |P_a^x(f)'| + |N_a^x(f)'|$. But as $P_a^x(f)$, $N_a^x(f)$ are increasing, their derivatives are non-negative. Hence $|f(x)'| \leq P_a^x(f)' + N_a^x(f)'$. Hence $|f(x)'| \leq T_a^x(f)'$. So we have

$$\begin{aligned} \int_a^b |f'| dx &\leq \int_a^b (T_a^x)' dx \\ &\leq T_a^b(f) - T_a^a(f) \\ &= T_a^b(f). \end{aligned}$$

Next, let f be continuously differentiable. Let \mathcal{P} be any partition. Then

$$f(x_i) - f(x_{i-1}) = \int_{x_i}^{x_i} f'(t) dt$$

and

$$|f(x_i) - f(x_{i-1})| \leq \int_{x_i}^{x_i} |f'(t)| dt.$$

Summing over i , we get

$$t(\mathcal{P}, f) = \sum_{i=1}^n |f(x_i) - f(x_{i-1})| \leq \int_a^b |f'(t)| dt.$$

Taking supremum over all partitions, we get

$$T_a^b(f) \leq \int_a^b |f'(t)| dt.$$

□

6.1. Vector Valued Maps. Let $f : [a, b] \rightarrow \mathbb{R}^N$, $f = (f_1, f_2, \dots, f_N)$ and $|f(x)| = (\sum_{i=1}^N |f_i(x)|^2)^{\frac{1}{2}}$. Let \mathcal{P} be a partition of $[a, b]$ and $t(\mathcal{P}, f) = \sum_{i=1}^n |f(x_i) - f(x_{i-1})|$. Then f is of bounded variation iff $\sup_{\mathcal{P}} t(\mathcal{P}, f) < \infty$.

Lemma 6.13. *Let $f : [a, b] \rightarrow \mathbb{R}^N$. Then*

$$|\int_a^b f dx| \leq \int_a^b |f| dx.$$

Proof. Let $y_i = \int_a^b f_i dx$. Then $\int_a^b f dx = y = (y_1, \dots, y_N)$. $|\int_a^b f dx|^2 = |y|^2 = \sum_{i=1}^N |y_i|^2 = \sum_{i=1}^N y_i \int_a^b f_i dx = \int_a^b \sum_{i=1}^N y_i f_i(x) dx \leq \int_a^b |y| |f| dx = |y| \int_a^b |f| dx$. If $y = 0$, the proof is clear. Else, by dividing, we get

$$|\int_a^b f dx| \leq \int_a^b |f| dx.$$

□

Theorem 6.14. *If $f : [a, b] \rightarrow \mathbb{R}^N$ is of bounded variation and continuously differentiable, then*

$$T_a^b(f) = \int_a^b |f'(x)| dx.$$

Proof. Consider any partition \mathcal{P} . Then $\sum_{i=1}^n |f(x_i) - f(x_{i-1})| = \sum_{i=1}^n \left| \int_{x_{i-1}}^{x_i} f'(t) dt \right| \leq \sum_{i=1}^n \int_{x_{i-1}}^{x_i} |f'(t)| dt = \int_a^b |f'(t)| dt$. Hence, $T_a^b(f) \leq \int_a^b |f'(t)| dt$.

Since f is continuously differentiable on $[a, b]$, f' is uniformly continuous on $[a, b]$. Hence for $\epsilon > 0$, $\exists \delta > 0$ such that $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$. Choose $\mathcal{P} = \{a = x_0 < x_1 < \dots < x_n = b\}$ to be a partition such that $\forall i, \Delta x_i = x_i - x_{i-1} < \delta$. Let $t \in [x_{i-1}, x_i]$. Then $|f'(t)| < |f'(x_i)| + \epsilon$. Hence

$$\int_{x_{i-1}}^{x_i} |f'(t)| dt \leq |f'(x_i)| \Delta x_i + \epsilon \Delta x_i.$$

That is,

$$\begin{aligned} \int_{x_{i-1}}^{x_i} |f'(t)| dt - \epsilon \Delta x_i &\leq |f'(x_i)| \Delta x_i \\ &= \left| \int_{x_{i-1}}^{x_i} f'(x_i) dt \right| \\ &= \left| \int_{x_{i-1}}^{x_i} (f'(t) + f'(x_i) - f'(t)) dt \right| \\ &\leq \left| \int_{x_{i-1}}^{x_i} f'(t) dt \right| + \left| \int_{x_{i-1}}^{x_i} f'(x_i) - f'(t) dt \right| \\ &\leq |f(x_i) - f(x_{i-1})| + \int_{x_{i-1}}^{x_i} |f'(x_i) - f(t)| dt \\ &\leq |f(x_i) - f(x_{i-1})| + \epsilon \Delta x_i. \end{aligned}$$

Hence

$$\int_a^b |f'(t)| dt - \epsilon(b-a) \leq T(\mathcal{P}, f) + \epsilon(b-a).$$

Thus,

$$\int_a^b |f'(t)| dt \leq T(\mathcal{P}, f) + 2\epsilon(b-a) \leq T_a^b(f) + 2\epsilon(b-a).$$

$$\text{Hence, } \int_a^b |f'(t)| dt \leq T_a^b(f).$$

□

Let γ be a curve in \mathbb{R}^2 . That is, $\gamma : [0, 1] \rightarrow \mathbb{R}^2$. γ is a rectifiable arc iff γ is of bounded variation and the length of γ is $T_0^1(\gamma)$. If γ is a continuously differentiable function, then its length = $\int_0^1 |\gamma'(t)| dt$.

Let $\gamma(t) = (x(t), y(t))$. Then $\gamma'(t) = (x'(t), y'(t))$ and $|\gamma'(t)| = \sqrt{x'^2 + y'^2}$. Hence length of $\gamma = \int_0^1 \sqrt{x'^2 + y'^2} dt = \int_0^1 \sqrt{1 + (\frac{dy}{dx})^2} dx$

Proposition 6.15. *Let $f \geq 0$ be integrable. Then given $\epsilon > 0, \exists \delta > 0$ such that if $\mu(E) < \delta$, then $\int_E f d\mu < \epsilon$.*

Proof. (1) First, assume f is bounded. Then $\exists K > 0$ such that $|f| \leq K$. Then $\int_E f d\mu \leq K\mu(E)$. So, in this case, we choose $\delta < \frac{\epsilon}{K}$.

(2) In the general case, Let

$$f_n(x) = \begin{cases} f(x), & f(x) \leq n \\ n, & f(x) > n \end{cases}$$

Then f_n is bounded, $f_n \leq f$ and $f_n \nearrow f$. By the monotone convergence theorem, $\int f_n \rightarrow \int f$. So given $\epsilon > 0$, choose N such that $\forall n \geq N, \int_X f - \int_X f_n < \frac{\epsilon}{2}$. Consider the corresponding f_N . By the bounded case, $\exists \delta > 0$ such that $\mu(E) < \delta \Rightarrow \int_E f_N d\mu < \frac{\epsilon}{2}$. Hence, if $\mu(E) < \delta$,

$$\begin{aligned} \int_E f d\mu &= \int_E f - f_N d\mu + \int_E f_N d\mu \\ &\leq \int_X f - f_N d\mu + \int_E f_N d\mu \\ &< \epsilon. \end{aligned}$$

□

Proposition 6.16. *Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Then*

$$\lim_{h \rightarrow 0} \frac{1}{h} \int_x^{x+h} f(t) dt = f(x).$$

Proof. Let $\epsilon > 0$ and $x \in \mathbb{R}$. Then $\exists \delta > 0$ such that $|t - x| < \delta \Rightarrow |f(t) - f(x)| < \epsilon$.

$$\begin{aligned} \left| \frac{1}{h} \int_x^{x+h} f(t) dt - f(x) \right| &= \left| \frac{1}{h} \int_x^{x+h} f(t) - f(x) dt \right| \\ &\leq \frac{1}{h} \int_x^{x+h} |f(t) - f(x)| dt \\ &\leq \frac{1}{h} \epsilon h, \end{aligned}$$

by choosing h small enough. \square

Proposition 6.17. *Let f be integrable on $[a, b]$. Define $F(x) = \int_a^x f(t) dt$. Then F is a uniformly continuous function of bounded variation.*

Proof. Let $x < y$. Then $|F(x) - F(y)| = \left| \int_x^y f(t) dt \right| \leq \int_x^y |f(t)| dt$. By Proposition 6.15, given $\epsilon > 0, \exists \delta > 0$ such that $|x - y| < \delta \Rightarrow \int_x^y |f(t)| dt < \epsilon$. Hence F is uniformly continuous. Next, let \mathcal{P} be a partition of $[a, b]$. Then

$$\begin{aligned} \sum_{i=1}^n |F(x_i) - F(x_{i-1})| &= \sum_{i=1}^n \left| \int_{x_{i-1}}^{x_i} f(t) dt \right| \\ &\leq \sum_{i=1}^n \int_{x_{i-1}}^{x_i} |f(t)| dt \\ &= \int_a^b |f(t)| dt. \end{aligned}$$

Hence F is of bounded variation. \square

Proposition 6.18. *Let f be integrable on $[a, b]$. Assume that $\forall x \in [a, b], \int_a^x f(t) dt = 0$. Then $f = 0$ almost everywhere.*

Proof. Let $E_+ = \{x : f(x) > 0\}$. We will show that $\mu(E_+) = 0$. Similarly, we show that $E_- = \{x : f(x) < 0\}$ has measure zero. Assume $\mu(E_+) > 0$. Then $\exists F$ closed, $F \subseteq E_+$ and $\mu(F) > 0$. Let $U = (a, b) \setminus F$. Then U is open and $U \cap F = \emptyset$.

Also,

$$\int_a^b f(t) dt = \int_U f(t) dt + \int_F f(t) dt.$$

Hence

$$\int_U f(t) dt = - \int_F f(t) dt \neq 0.$$

Let $U = \bigcup_{n=1}^{\infty} [a_n, b_n]$, a disjoint union. Let $g_n = f \upharpoonright \bigcup_{i=1}^n [a_i, b_i]$. Then $|g_n| \leq |f|$, f integrable and $g_n \rightarrow f \upharpoonright U$. By the dominated convergence theorem, $\int_U g_n d\mu \rightarrow$

$\int_U f d\mu$. Now, $0 \neq \int_U f(t) dt = \sum_{n=1}^{\infty} \int_{a_n}^{b_n} f(t) dt$. Hence $\exists n$ such that $\int_{a_n}^{b_n} f(t) dt \neq 0$.

That is, $\int_a^{b_n} f(t) dt - \int_a^{a_n} f(t) dt \neq 0$, a contradiction. \square

Proposition 6.19. *Let f be a bounded measurable function on $[a, b]$ and let $F(x) = \int_a^x f(t) dt$. Then F' = f almost everywhere.*

Proof. By Proposition 6.17, F is of bounded variation. Hence F' exists almost everywhere. Define

$$f_n(x) = n(F(x + \frac{1}{n}) - F(x)) = n \int_x^{x + \frac{1}{n}} f(t) dt.$$

Suppose $|f| \leq K$. Then $|f| \leq K$ and $f \rightarrow F'$ almost everywhere. By the dominated convergence theorem, $\forall c \in [a, b]$,

$$\begin{aligned} \int_a^c F'(t) dt &= \lim_{n \rightarrow \infty} \int_a^c f_n(t) dt \\ &= \lim_{n \rightarrow \infty} n \int_a^c (F(t + \frac{1}{n}) - F(t)) dt \\ &= \lim_{n \rightarrow \infty} n \left(\int_c^{c + \frac{1}{n}} F(t) dt - \int_a^{a + \frac{1}{n}} F(t) dt \right) \\ &= F(c) - F(a) \\ &= \int_a^c f(t) dt \quad \forall c \in [a, b]. \end{aligned}$$

By Proposition 6.18, $F' = f$ almost everywhere. \square

Theorem 6.20. *Suppose f is integrable on $[a, b]$ and $F(x) = \int_a^x f(t) dt$. Then $F' = f$ almost everywhere.*

Proof. Assume without loss of generality that $f \geq 0$. Define

$$f_n(x) = \begin{cases} f(x), & f(x) \leq n \\ n, & f(x) > n \end{cases}$$

Then $f_n \nearrow f$ and $f - f_n \geq 0$, f_n bounded for all n . Let $G_n(x) = \int_a^x (f - f_n)(t) dt$.

Then $\forall n$, G_n is monotonically increasing and thus differentiable almost everywhere.

By Proposition 6.1, $(\int_a^x f_n(t) dt)' = f_n$ almost everywhere. Now, $F(x) = \int_a^x (f - f_n)(t) dt + \int_a^x f_n(t) dt = G_n(x) + \int_a^x f_n(t) dt$. Hence, $F' = G' + f_n \geq f_n \forall n$ since G'_n is positive. Hence $F \geq f$. Now, $F(b) \geq \int_a^b F'(x) dx \geq \int_a^b f(x) dx = F(b) - F(a) = F(b)$, where the first inequality holds since F is monotonically increasing due to the fact

that $f \geq 0$. Hence, equality holds and $\int_a^b F'(x) dx = \int_a^b f(x) dx$. But $F' - f \geq 0 \Rightarrow F' = f$ almost everywhere. \square

Definition 6.21 (Absolutely continuous). Suppose F is a function such that given $\epsilon > 0$, $\exists \delta > 0$ such that if $\{(x_k, y_k)\}$ is a disjoint collection of intervals such that $\sum_{k=1}^n y_k - x_k < \delta$, then $\sum_{k=1}^n |F(y_k) - F(x_k)| < \epsilon$. Then F is said to be absolutely continuous. Any indefinite integral is absolutely continuous.

Proposition 6.22. *If f is absolutely continuous, then f is of bounded variation.*

Theorem 6.23. *Suppose f is absolutely continuous and $f' = 0$ almost everywhere. Then f is a constant.*

Theorem 6.24. *Suppose F is absolutely continuous. Then*

$$F(x) = F(a) + \int_a^x F'(t) dt.$$

Proof. F is of bounded variation and hence $F = F_1 - F_2$, where F_i are monotonically increasing.

$$\begin{aligned} \int_a^b |F'| &\leq \int_a^b |F'_1| + |F'_2| \\ &= \int_a^b F'_1 + \int_a^b F'_2 \\ &\leq F_1(b) - F_1(a) + F_2(b) - F_2(a) \\ &= F(b) - F(a). \end{aligned}$$

Hence F' is integrable. Let $G(x) = \int_a^x F'(t) dt$. Then $G' = F'$ almost everywhere. Also, $F - G$ is absolutely continuous. By Theorem 6.23, $F = G + c$. Hence $F(x) = \int_a^x F'(t) dt + \text{constant}$. Take $x = a$ to get $F(x) = \int_a^x F'(t) dt + F(a)$. \square

7. PRODUCT SPACES

8. L^p SPACES