
NOTES ON MEASURE THEORY

Abstract. Notes on the Measure Theory course taken at IITM by Prof. S.

Kesavan

1. Riemann Integration

Let [a, b] be a closed interval in R. Let R be the class of Riemann integrable
functions on [a, b].

Consider a partition of the interval P = {a = x1, x2, · · · , xn = b}. Let ti ∈
[xi−1, xi] and S(P, f) =

∑n
i=1 f(ti)∆xi. Let µ(P ) = max

i∈{i,··· ,n}
∆xi.

We say that lim
µ(P )→0

S(P, f) = A if ∀ε > 0,∃δ > 0 such that ∀P such that

µ(P ) < δ, and for all choices of ti ∈ [xi−1, xi], 1 ≤ i ≤ n, |S(P, f)−A| < ε.

Theorem 1.1. (1) If lim
µ(P )→0

S(P, f) = A, then f ∈ R and
∫ b
a
f dx = A.

(2) If f is continuous, then f ∈ R.

(3) If f ∈ R, then lim
µ(P )→0

S(P, f) =
∫ b
a
f dx.

Proof. (1) Let ε > 0. Then ∃δ > 0 such that

µ(P ) < δ =⇒ A− ε

2
< S(P, f) < A+

ε

2
.

Choose such a partition. Letting ti vary, moving towards the points of
infimum and supremum, we get

A− ε

2
≤ L(P, f) ≤ U(P, f) ≤ A+

ε

2

=⇒ U − L ≤ ε =⇒ f ∈ R.

Also, L(P, f) ≤
∫ b
a
f dx ≤ U(P, f) =⇒

∫ b
a
f dx = A.

(2) If f is continuous on [a, b], then f is uniformaly continuous on [a, b]. Hence
for ε > 0,∃δ > 0 such that |x − y| < δ =⇒ |f(x) − f(y)| < ε. Hence, if
µ(P ) < δ, then Mi −mi < ε.

=⇒ U(P, f)− L(P, f) < ε(b− a).

(3) Let ε > 0 and M = sup
x∈[a,b]

|f(x)|. f ∈ R =⇒ ∃P∗ such that U(P∗, f) <∫ b
a
f dx + ε

4 . Assume that P∗ has n subintervals and choose δ1 < ε
4Mn .

Choose P such that µ(P ) < δ1. Now U(P, f) can be written as two sums,
one that depends on the contributions of subintervals containing nodes of
P∗ and those that do not contain nodes of P∗. The first sum is less than
Mε(n−1)

4Mn , while the second sum is less that U(P∗, f). Hence U(P, f) <
ε
2 +

∫ b
a
f dx. Similarly, find δ2 > 0 such that µ(P ) < δ2 =⇒ L(P, f) >

1
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a
f dx − ε

2 . Let δ = min (δ1, δ2). =⇒
∫ b
a
f dx − ε

2 < L ≤ S ≤ U <∫ b
a
f dx+ ε

2 .

�

Example 1.2. Let r1, r2, · · · , rn, · · · be an enumeration of the rationals in [a, b].
Let

fn(x) =

{
1, x = x1, · · · , xn,
0, otherwise.

Then for a partition P with n subintervals, L(P, f) = 0 and U(P, f) < nµ(P ).

Taking µ(P ) as small as required, we get that fn ∈ R and
∫ b
a
fn dx = 0.

Example 1.3. Let

f(x) =

{
1, x is rational,

0, otherwise.

Then for every partition P , L(P, f) = 0 and U(P, f) = b − a 6= 0. Hence f /∈ R.
We observe that the fn of the previous example converge pointwise to f .

This is why the need for a different kind fo integration arises. Consider a

step function f =
∑n
i=1 αiχIi , where Ii are intervals. Then we define

∫ b
a
f =∑n

i=1 αil(Ii).

We note that the integral is also equal to
n∑
i=1

αi( total length of intervals where f = αi).

Next, we ask whether the intervals Ii can be replaced by arbitrary sets Ei. How
do we talk about the ‘length’ of an arbitrary set? Hence, the need for measures
arises.

2. Measures

Let X be a non-empty set and P(X) denote the power set of X.

Definition 2.1. A ring R is a subset of P(X) which is closed under unions and
differences. That is,

E,F ∈ R =⇒ E ∪ F,E \ F ∈ R.

Remark 2.2. Let R be a ring. Then

(1) ∅ ∈ R.
(2) E,F ∈ R =⇒ E ∩ F = E \ (E \ F ) ∈ R.
(3) E4F = (E \ F ) ∪ (F \ E) ∈ R.

Hence a ring contains the empty set, is closed under intersections and sym-
metric differences. It is also clear that a ring is closed under finite unions
and intersections.

(4) If R is closed under unions and finite differences, then it is a ring since
E \ F = (E ∪ F )4F .

(5) If R is closed under intersections and finite differences, then it is a ring
since E ∪ F = (E4F )4(E ∩ F ).
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Example 2.3. (1) P(X) is trivially a ring.
(2) R = {∅} is a ring.
(3) Let X = Z and R = {A ⊂ Z : A is finite or φ}.
(4) Let X = R and P = {[a, b) : a, b ∈ R, a ≤ b} and R = set of finite unions

of elements of P.

Definition 2.4. A ring R is said to be an algebra if X ∈ R.

Hence an algebra is closed under unions and complementations. Conversely, if
R is closed under unions and complementations, it is an algebra, since

X = E ∪ Ec, E \ F = E ∩ F c = (Ec ∪ F c)c.

Let E ⊆ P(X). Then P(X) is a ring containing E . The intersection of rings is
again a ring. Hence, the intersection of all rings containing E is the smallest ring
containing E and is called the ring generated by E . We denote it by R(E)

Let R′ = {all subsets which covered by a finite number of members of E}. Then
E ⊆ R′ and E1, E2 ∈ R′ =⇒ E1 ∪E2, E1 \E2 ∈ R′. Hence R′ is a ring containing
E . Hence, R(E) ⊆ R′. This shows that every member of the ring generated by E
can be covered by finitely many members of E .

Definition 2.5. A σ-ring S is a collection of subsets of X which is closed under
differences and countable unions. That is,

(1) E,F ∈ S =⇒ E \ F ∈ S.
(2) {Ei}∞i=1 ⊆ S =⇒ ∪∞i=1Ei ∈ S.

Let E = ∪∞i=1Ei. Then ∩∞i=1 = E \ (∪∞i=1(E \ Ei)) ∈ S.

As before, for E ⊆ P(X), one can talk of the σ-ring generated by E and denote
it by S(E).

Definition 2.6. S is called a σ-algebra if it si a σ-ring such that X ∈ S.

The above definition can be shown to be equivalent to S being closed under
countable unions and complementations.

Let (X, τ) be a topological space. Then S(τ), the σ-ring generated by τ is
actually a σ-algebra and is called the Borel σ-algebra generated by (X, τ).

Let X be a non-empty set and R a ring on X.

Definition 2.7. A measure µ on R is an extended real-valued function such that:

(1) µ(E) ≥ 0 ∀E ∈ R
(2) µ(∅) = 0
(3) µ satisfies countable additivity, that is, if {Ei}∞i−1 is a collection of mutually

disjoint sets in R and if E = ∪∞i=1Ei ∈ R, then µ(E) =
∑∞
i=1 µ(Ei).

Here, we need not worry about convergence of the series as µ is an extended
real valued function, and rearrangements do not affect the summation since each
term is positive.
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Remark 2.8. If we assume that there exists at least one E ∈ R such that µ(E) <
∞, then (2) follows from (1) and (3), for

E = E ∪ ∅ ∪ ∅ ∪ · · ·

and hence

µ(E) = µ(E) + µ(∅) + µ(∅) + · · ·
giving µ(∅) = 0 since µ(E) is finite.

Example 2.9. (1) Let X 6= ∅ and R = P(X). For E ⊆ X, define

µ(E) =

{
number of elements in E, if E is finite,

∞, otherwise.

(2) Dirac measure: X 6= ∅,R = P(X). Fix x0 ∈ X. Let

δx0(E) =

{
1, if x0 ∈ E,
0, otherwise.

(3) X 6= ∅, R=the ring of finite subsets of X. Let f : X → R be a non-negative
function. Let E = {x1, x2, · · · , xn}. Define µ(E) =

∑n
i=1 f(xn).

Let X be a non-empty set, R a ring and µ a measure on R.

Proposition 2.10. (1) µ is monotone, i.e.,

E ⊂ F,E, F ∈ R =⇒ µ(E) ≤ µ(F ).

(2) µ is subtractive, i.e.,

µ(F \ E) = µ(F )− µ(E) ∀E ⊂ F, E, F ∈ R, µ(E) <∞.

Proof. (1) If E ⊂ F , then F = E ∪ (F \ E). Hence µ(F ) = µ(E) + µ(F \ E).
Hene µ(E) ≤ µ(F ).

(2) Further, if µ(E) <∞, then µ(F \ E) = µ(F )− µ(E).

�

Proposition 2.11. Let E,Ei ∈ R,∪∞i=1Ei ⊂ E and Ei disjoint. Then

µ(E) ≥
∞∑
i=1

µ(Ei).

Proof. ∀n,∪ni=1Ei ⊂ E. Hence µ(E) ≥ µ(∪ni=1Ei) =
∑n
i=1 µ(Ei)∀n. Hence µ(E) ≥∑∞

i=1 µ(Ei). �

Proposition 2.12 (Continuity from below). Let Ei ∈ R, {Ei} be an increasing
sequence. Let E = ∪∞i=1Ei ∈ R. Then µ(E) = lim

i→∞
µ(Ei).

Proof. µ(∪∞i=1) = µ(∪∞i=1(Ei \ Ei−1)) =
∑∞
i=1 µ(Ei \ Ei−1) = lim

n→∞

∑n
i=1 µ(Ei \

Ei−1) = lim
n→∞

µ(∪ni=1(Ei \ Ei−1)) = lim
n→∞

µ(En). �

Proposition 2.13. Let {Ei} be a decreasing sequence in R, E = ∩∞i=1Ei ∈ R.
Suppose ∃m ∈ N such that µ(Em) <∞. Then µ(E) = lim

n→∞
µ(En).
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Proof.

µ(Em) <∞ =⇒ µ(En) <∞∀n ≥ m.
µ(Em)− µ(E) = µ(Em)− µ(∩n≥mEn) = µ(Em \ ∩n≥mEn)

= µ(∪n≥m(Em \ En)) = lim
n→∞

µ(Em \ En)

= lim
n→∞

(µ(Em)− µ(En)) = µ(Em)− lim
n→∞

µ(En).

Hence µ(E) = lim
n→∞

µ(En). �

Example 2.14. Let X = N, R = P(N) and µ be the counting measure. Let
En = {n, n+ 1, · · · }. Then µ(En) =∞∀n, ∩∞n=1(En) = ∅ and µ(∅) = 0. Hence the
condition that µ(Em) <∞ for some m ∈ N cannot be removed.

Definition 2.15. Let X 6= ∅, R be a ring and µ a measure. H(R) is defined as
the smallest hereditary σ-ring containing R. That is, H(R) is a σ-ring containing
R, and if E ∈ H(R), F ⊂ E, then F ∈ H(R).

Let E be any collection of sets and S(E) be the smallest σ-ring containing E . Let
f ∈ S(E). Then ∃{Ei}∞i=1 in E such that F ⊂ ∪∞i=1Ei. Let H(R) be the collection
of all sets which can be covered by a countable number of elements of R. Then
H(R) is hereditary.

Definition 2.16 (Outer measure). An outer measure µ∗ on H is an extended real
valued function µ∗ : H → R ∪ {∞} such that

(1) µ∗(E) ≥ 0 ∀E ∈ H.
(2) µ∗(∅) = 0.
(3) µ∗ is monotone, i.e., E ⊂ F,E, F ∈ H =⇒ µ∗(E) ≤ µ∗(F ).
(4) µ∗ is countably additive, i.e. if E = ∪∞i=1Ei, E,Ei ∈ H, then µ∗(E) ≤∑∞

i=1 µ
∗(Ei).

Proposition 2.17. Let X 6= ∅,R be a ring and µ a measure. Let E ∈ H. Then
we know that ∃{Ei}, Ei ∈ R such that E ⊂ ∪∞i=1Ei. Define

µ∗(E) = inf {
∞∑
i=1

µ(Ei)|E ⊂ ∪∞i=1Ei, Ei ∈ R}

Then µ∗ is an outer measure on H(R) which extends µ, i.e. if E ∈ R, then
µ(E) = µ∗(E).

Proof. Let E ∈ R. Now, E ⊂ E, hence µ∗(E) ≤ µ(E). Let E ⊂ ∪∞i=1Ei. Then
µ(E) ≤

∑∞
i=1 µ(Ei). This is true for every cover {Ei} of E and hence µ(E) ≤ µ∗(E).

In particular, µ∗(∅) = 0. Clearly, µ∗ ≥ 0.

Let E ⊂ F . Then every cover of F is also a cover of E. Hence µ∗(E) ≤ µ∗(F ).

Let E,Ei ∈ H(R), E = ∪∞i=1Ei. Assume ∃i such that µ∗(Ei) = ∞. Then∑∞
i=1 µ

∗(Ei) = ∞ ≥ µ∗(E). So assume that µ∗(Ei) < ∞∀i. Let ε > 0. Then
∃{Eij}∞j=1 in R such that Ei ⊂ ∪∞i=1Eij and

∑∞
i=1 µ(Eij) < µ∗(Ei) + ε

2i . This is
true since µ(Ei) <∞. Hence

E ⊂ ∪∞i=1 ∪∞j=1 Eij

=⇒ µ∗(E) ≤
∞∑

i,j=1

µ(Eij) ≤
∞∑
i=1

(

∞∑
j=1

µ(Eij))
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≤
∞∑
i=1

µ∗(Ei) + ε.

Hence µ∗(E) ≤
∑∞
i=1 µ

∗(Ei).

�

Example 2.18. Let X = N,R be the set of all finite subsets inN and µ be the
counting measure. Then H(R) = P(N). µ∗(E) = ∞ if E is infinite. So the outer
measure may be infinite even though the measure is finite.

Definition 2.19. A measure µ (or an outer measure µ∗) is called finite if µ(E) <
∞ (µ∗(e) <∞),∀E ∈ R.

A measure µ (or an outer measure µ∗) is called σ-finite if ∀E ∈ R, ∃{Ei} ⊂ R
such that E ⊆ ∪∞i=1Ei and µ(Ei) <∞∀i (respectively µ∗(Ei) <∞∀i).

Proposition 2.20. If µ is σ-finite on R, then µ∗ is also sigma-finite on H(R).

Proof. Let E ∈ H(R). ∃Ei ∈ R such that E ⊂ ∪∞i=1Ei. Since µ is σ-finite,
Ei ⊂ ∪∞j=1Eij , with Eij ∈ R and µ(Eij) < ∞. Hence E ⊂ ∪∞i=1 ∪∞j=1 Eij and
µ∗(Eij) = µ(Eij) <∞. �

Definition 2.21. Let H be any hereditary σ-ring and µ∗ be an outer measure on
H. A set E is said to be µ∗-measurable if ∀A ∈ H, we have

µ∗(A) = µ∗(A ∩ E) + µ(A ∩ Ec).

We want to obtain a measure from the outer measure µ∗, hence we need to build
our way towards countable additivity.

Let S̄ be the collection of all µ∗-measurable sets in H.

Proposition 2.22. Let H be a hereditary σ-ring, µ∗ an outer measure on H and
S̄ the collection of µ∗-measurable sets in H. Then S̄ is a ring.

Proof. Let E,F ∈ S̄. We must show the following:

(1) E ∪ F ∈ S̄
(2) E \ F ∈ S̄.

Let A ∈ H be arbitrary.

E ∈ S̄ =⇒ µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).
F ∈ S̄ =⇒ µ∗(A ∩ E) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F c)

and
µ∗(A ∩ Ec) = µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ Ec ∩ F c)

So

µ∗(A) = µ∗(A∩E ∩F ) +µ∗(A∩E ∩F c) +µ∗(A∩Ec ∩F ) +µ∗(A∩Ec ∩F c). (1)

Replacing A by A ∩ (A ∩ (E ∪ F )), we get:

µ∗(A ∩ (E ∪ F )) = µ∗((A ∩ (E ∪ F ) ∩ E ∩ F ) + µ∗((A ∩ (E ∪ F ) ∩ E ∩ F c)
+ µ∗((A ∩ (E ∪ F ) ∩ Ec ∩ F ) + µ∗((A ∩ (E ∪ F ) ∩ Ec ∩ F c).

This reduces to:

µ∗(A ∩ (E ∪ F )) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec ∩ F ). (2)
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Hence (1) becomes:

µ∗(A) = µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )c).

So E ∪ F ∈ S̄.

Next, we replace A in (1) by A∩ (E \F )c = A∩ (E ∩F c)c = A∩ (Ec ∪F ) to get

µ∗(A ∩ (E \ F )c) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ Ec ∩ F c).
Substituting in (1), we get

µ∗(A) = µ∗(A ∩ (E \ F )c) + µ∗(A ∩ (E \ F )).

So E \ F ∈ S̄ and hence S̄ is a ring.

�

Proposition 2.23. S̄ is a σ-ring. Further, if {Ei}∞i=1 is a disjoint sequence and
E = ∪∞i=1Ei, then

µ∗(A ∩ E) =

∞∑
i=1

µ∗(A ∩ Ei)∀A ∈ H. (3)

Proof. Consider E1 and E2. Since E1 ∩ E2 = ∅, E1 ⊆ Ec2 and E2 ⊆ Ec1. Taking
E = E1 and F = E2 in (2), we get:

µ∗(A ∩ (E1 ∪ E2)) = µ∗(A ∩ E1) + µ∗(A ∩ E2).

By induction, we get:

µ∗(A ∩ (∪ni=1Ei)) =

n∑
i=1

µ∗(A ∩ Ei).

Let Fn = ∪ni=1Ei. Fn ∈ S̄ since S̄ is a ring.

Let A ∈ H be arbitrary. Then

µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F cn)

=

n∑
i=1

µ∗(A ∩ Ei) + µ∗(A ∩ F cn)

≥
n∑
i=1

µ∗(A ∩ Ei) + µ∗(A ∩ Ec) by monotonicity.

(4)

The above is true for every n ∈ N. Hence

µ∗(A) ≥
∞∑
i=1

µ∗(A ∩ Ei) + µ∗(A ∩ Ec). (5)

Now replace A by A ∩ E in (5) to get:

µ∗(A ∩ E) ≥
∞∑
i=1

µ∗(A ∩ Ei).

But by subadditivity, we already have

µ∗(A ∩ E) ≤
∞∑
i=1

µ∗(A ∩ Ei).

Now, substituting in (4), we get

µ∗(A) ≥ µ∗(A ∩ E).
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By subadditivty,

µ∗(A) ≤ µ∗(A ∩ E).

Hence E ∈ S̄. Thus, S̄ is closed under countable disjoint unions. But this is
sufficient to show that it is a σ-ring, since it is already known to be a ring. �

Theorem 2.24 (Caratheodory Extension). Let H be a hereditary σ-ring and µ∗

be an outer measure on H. Let S̄ be the σ-ring of µ∗ measurable sets. Define for
E ∈ S̄, µ̄(E) = µ∗(E). Then µ̄ is a measure on S̄, which is complete. That is, if
µ̄(E) = 0 and F ⊆ E, then F ∈ S̄ and µ̄(F ) = 0.

Proof. Let {Ei}∞i=1 be a disjoint sequence in S̄, E = ∪∞i=1Ei. Taking A = E in (3),
we get

µ̄(E) = µ∗(E) =

∞∑
i=1

u∗(Ei) =

∞∑
i=1

ū(Ei).

So µ̄ is a measure on S̄. Next, let µ∗(E) = 0 for some E ∈ H. Let A ∈ H be
arbitrary. Then

µ∗(A) = µ∗(A) + µ∗(E)

≥ µ∗(A ∩ Ec) + µ∗(A ∩ E).

But already, µ∗(A) ≤ µ∗(A ∩ Ec) + µ∗(A ∩ E). Hence E ∈ S̄. By monotonicity, if
F ⊆ E, µ∗(F ) = 0 and so µ̄ is complete. �

Theorem 2.25. Let R be a ring, µ a measure on R. Let H(R) be the hereditary
σ-ring generated by R. Let µ∗ be the canonical outer measure on H(R). Let S̄
be the σ-ring of µ∗ measurable sets. Then S(R), the σ-ring generated by R, is
contained in S̄.

Proof. It suffices to show that R ⊂ S̄. Let E ∈ R, A ∈ H(R) be arbitrary. We
must show that µ∗(A) ≥ µ∗(A∩E)+µ∗(A∩Ec). If µ∗(A) =∞, there is nothing to
prove. Assume µ∗(A) <∞. Let ε > 0. Then ∃{Ei}∞i=1 ⊆ R such that A ⊂ ∪∞i=1Ei
and

∑∞
i=1 µ(Ei) < µ∗(A) + ε. We have

µ∗(A) + ε >

∞∑
i=1

µ(Ei)

=

∞∑
i=1

µ(Ei ∩ E) +

∞∑
i=1

µ(Ei ∩ Ec)

=

∞∑
i=1

µ∗(Ei ∩ E) +

∞∑
i=1

µ∗(Ei ∩ Ec)

≥ µ∗(A ∩ E) + µ∗(A ∩ Ec) by subadditivity.

Hence E ∈ S̄ =⇒ R ⊆ S̄. �

Proposition 2.26. Let E ∈ H(R). Then

µ∗(E) = inf {µ̄(F ) : F ∈ S̄, E ⊂ F}
= inf {µ̄(F ) : F ∈ S(R), E ⊂ F}
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Proof.

µ∗(E) = inf {
∞∑
i=1

µ(Ei) : E ⊂ ∪∞i=1Ei, Ei ∈ R}

= inf {
∞∑
i=1

µ̄(Ei) : E ⊂ ∪∞i=1Ei, Ei ∈ R}

≥ inf {
∞∑
i=1

µ̄(Ei) : E ⊂ ∪∞i=1Ei, Ei ∈ S(R)}

≥ inf {µ̄(∪∞i=1(Ei)) : E ⊂ ∪∞i=1Ei, Ei ∈ S(R)}
= inf {µ̄(F ) : E ⊂ F, F ∈ S(R)}
≥ inf {µ̄(F ) : E ⊂ F, F ∈ S̄}
≥ µ∗(E) (since µ̄(F ) = µ∗(F ) ≥ µ∗(E)).

�

Thus equality must hold in every step. In particular, we record the following
equality:

µ∗(E) = inf {µ̄(∪∞i=1(Ei)) : E ⊂ ∪∞i=1Ei, Ei ∈ S(R)}.
But the right hand side of the above equality, by the definition of an outer measure,
is equal to (µ̄)∗(E). Thus, if we start with the measure µ̄ on the σ-ring S(R), the
corresponding outer measure is µ∗.

Definition 2.27. Let E ∈ H(R). When F ⊃ E,F ∈ S(R), we say that F is a
measurable cover of E if whenever G ∈ S(R) and G ⊆ F \ E, then µ̄(G) = 0.

Proposition 2.28. Let E ∈ H(R) and µ∗(E) <∞. Then there exists a measurable
cover of E.

Proof. Let n ∈ N. Since µ∗(E) < ∞, by Proposition 2.26, ∃Fn ∈ S(R) such that
E ⊆ Fn and µ̄(Fn) < µ∗(E) + 1

n . Let F = ∩∞n=1. Then F ∈ S(R) and E ⊆ F , and

µ∗(E) ≤ µ∗(F ) ≤ µ∗(Fn) = µ̄(Fn) < µ∗(E) +
1

n
∀n ∈ N.

Hence
µ∗(E) = µ∗(F ) = µ̄(F ).

Let G ⊆ F \ E, G ∈ S(R). Then E ⊆ F \G and µ(G) <∞.

µ̄(F ) = µ∗(E) ≤ µ∗(F \G) = µ̄(F \G) = µ̄(F )− µ̄(G).

By finiteness of µ̄(F ), µ̄(G) = 0. �

Remark 2.29. The above is true if µ is σ-finite.

Remark 2.30. If µ is σ-finite, then µ∗ is σ-finite. Hence µ̄ is σ-finite on S(R) and
S̄.

3. Lebesgue Measure

Let P = {[a, b) : a, b ∈ R, a ≤ b} and R be the set of finite unions of elements
from P. R can also be shown to be equal to the set of finite disjoint unions of
elements of P.

Define µ([a, b)) := b− a, µ(∅) = 0.
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Proposition 3.1. Let {E1, · · · , En} be a finite disjoint collection of elements from
P, all of them contained in E0 ∈ P. Then

∑n
i=1 µ(Ei) ≤ µ(E0.

Proof. Let Ei = [ai, bi), i = 0, 1, · · · , n. If necessary, renumber the sets so that, by
virtue for disjointness, a0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ b0.

n∑
i=1

µ(Ei) =

n∑
i=1

(bi − ai)

≤
n∑
i=1

(bi − ai) +

n−1∑
i=1

(ai+1 − bi)

= bn − a1

≤ b0 − a0

= µ(E0)

�

Proposition 3.2. Let F0 = [a0, b0]] be a closed interval contained in the union of
open intervals Ui = (ai, bi), i = 1, 2, · · · , n. Then b0 − a0 ≤

∑
i=1 6n(bi − ai).

Proof. Renumber and get rid of superfluous open intervals if necessary so that
bi ∈ (ai+1, bi+1)∀i. Then a0 ∈ U1, b0 ∈ Un and

b0 − a0 < bn − a1 = (b1 − a1) +

n−1∑
i=1

(bi+1 − bi) ≤
n∑
i=1

(bi − ai).

�

Proposition 3.3. Let {E0, E1, · · · , En, · · · } be a sequence in P such that E0 ⊂
∪∞i=1Ei. Then µ(E0) ≤

∑n
i=1 µ(Ei).

Proof. The result is trivial if E0 = ∅. So assume E0 6= ∅, i.e., b0 − a0 > 0. Choose
ε > 0 such that 0 < ε < b0 = a0. Let δ > 0 be arbitrary. Then F0 = [a0, b0−ε] ⊂ E0

Similarly, Ui = (ai − δ
2 , bi). So Ei ⊆ Ui. Hence, F0 ⊆ ∪∞i=1Ui. As F0 is compact,

∃n ∈ N such that F0 ⊆ ∪ni=1Ui. By Proposition 3.2,

b0 − ε− a0 ≤
n∑
i=1

(bi − ai +
δ

2i
) ≤

∞∑
i=1

(bi − ai) + δ.

Since ε and δ are arbitrary, we get b0−a0 ≤
∑n
i=1(bi−ai), i.e., µ(E0) ≤

∑∞
i=1 µ(Ei).

�

Proposition 3.4. µ is countably additive on P. That is, if {Ei} ⊆ P, Ei disjoint,
E = ∪∞i=1Ei ∈ P, then µ(E) =

∑∞
i=1 µ(Ei).

Proof. By Proposition 3.3, µ(E) ≤
∑∞
i=1 µ(Ei). By Proposition 3.1,

∑n
i=1 µ(Ei) ≤

µ(E)∀n ∈ N. Hence
∑∞
i=1 µ(Ei) ≤ µ(E) �

Theorem 3.5. ∃ a measure µ̃ on R such that

µ̃([a, b)) = µ([a, b)) = b− a∀[a, b) ∈ P.
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Proof. Let E ∈ R, E = ∪ni=1 = ∪mj=1, with Ei, Fj ∈ P, Ei, Fj disjoint. Then

Ei = ∪mj=1(Ei ∩ Fj)∀i and Fj = ∪ni=1(Fj ∩ Ei)∀m. So µ(Ei) =
∑m
j=1 µ(Ei ∩ Fj)

and µ(Fj) =
∑n
i=1 µ(Fj ∩ Ei). Hence

∑n
i=1 µ(Ei) =

∑n
i=1

∑m
j=1 µ(Ei ∩ Fj) =∑m

j=1 µ(Fj). So we define µ̃ as follows: Let E ∈ R, E = ∪ni=1, Ei ∈ P, Ei disjoint.

Let µ̃(E) =
∑n
i=1 µ(Ei). Then

(1) µ̃(∅) = 0
(2) µ̃ ≥ 0
(3) µ̃ is finitely additive.
(4) µ̃ is countably additive.

We now prove that µ̃ is countably additive. Let E = ∪∞i=1Ei, E ∈ R, Ei ∈ R, Ei
disjoint. Then for each i, Ei = ∪nik=1Eik, Eik ∈ P, Eik disjoint.

(1) If E ∈ P, then E = ∪∞i=1 ∪
ni
k=1 Eik, Eik ∈ P, E ∈ P. By Proposition 3.4,

µ̃(E) =
∑∞
i=1

∑ni
k=1 µ(Eik) =

∑∞
i=1 µ(Eik).

(2) If E ∈ R, then E = ∪ni=1Fj , Fj ∈ P disjoint. Then Fj = E ∩ Fj =
∪∞i=1Ei ∩ Fj , where the Ei ∩ Fj are in R and disjoint. Now,

µ̃(E) =

n∑
j=1

µ(Fj)

=

n∑
j=1

(

∞∑
i=1

µ(Ei ∩ Fj))

=

∞∑
i=1

(

n∑
j=1

µ(Ei ∩ Fj))

Ei = E ∩ Ei = ∪nj=1Ei ∩ Fj . Hence by finite additivity of µ̃,

µ̃(E) =

∞∑
i=1

µ(Ei) =

∞∑
i=1

µ̃(Ei).

�

Hereafter we refer to µ̃ as merely µ. Thus we now have a measure µ on the ring
R. By the Caratheodory extension theorem, we get the completion of µ, µ∗ from
which we get µ̄ on the σ-rings S(R) and S̄. µ̄ is called the Lebesgue measure on
R, and sets in S̄ are called Lebesgue measurable sets.

Since R = ∪n∈Z[n, n + 1),R ∈ H(R). Hence H(R) is in fact a σ-algebra and is
equal to all the subsets of R. µ̄(R) = ∞, but µ̄ is a σ-finite measure. Henceforth
we drop the bar and simply write µ.

Suppose we take Rn instead of R. Let P = {
∏n
i=1[ai, bi) : ai < bi}. Then

Propositions 3.1, 3.2, 3.3 and 3.4 are true, so that all of the above is true.

What is µ(R) in (R2, µ), where µ is the Lebesgue measure in R2? It is 0. To
prove this, let [a, b) ⊂ R. Let Eε = [a, b) × [0, ε). Then µ(Eε) = ε(b − a). Since
[a, b) × {0} = ∩∞n=1E 1

n
, µ([a, b) × {0}) = lim

n→∞
1
n (b − a) = 0. Now R = R × {0} =

∪n∈Z[n, n+ 1)× {0}. Hence µ(R) = 0.
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In general, if µ is the Lebesgue measure on Rn, and if E is a subspace of Rn
with dimension strictly less than n, then µ(E) = 0.

Proposition 3.6. S(R) = S(U), where U is the collection of all open subsets of
R. That is, S(R) is the Borel σ- algebra on R.

Proof. Let a, b ∈ R. (a, b) = [a, b) \ {a} and {a} = ∩∞n=1[a, a + 1
n ) ∈ S(R).

Hence (a, b) ∈ S(R). Since every open set is the countable union of open intervals,
U ⊆ S(R). Hence S(U) ⊆ S(R).

Conversely, [a, b) = (a, b) ∪ {a} and {a} = ∩∞n=1(a − 1
n , a + 1

n ) ∈ S(U). Thus
[a, b) ∈ S(U) =⇒ P ⊆ S(U) =⇒ R ⊆ S(U) =⇒ S(R) ⊆ S(U). �

Corollary 3.7. Every countable set is Borel measurable and its measure is 0.

Proof. We have seen that {a} = ∩∞n=1(a− 1
n , a+ 1

n ) ∈ S(U) = S(R) and µ({A}) =

lim
n→∞

2
n = 0. By countable additivity, the emasure of a countable set is 0. �

Proposition 3.8. Let E ⊆ R. Then µ∗(E) = inf {µ∗(U) : U open, E ⊂ U}.

Proof. The proposition is trivially true if µ∗(E) = ∞. Assume µ∗(E) < ∞. If
E ⊂ U , then µ∗(E) ≤ µ∗(U). Hence µ∗(E) ≤ inf {µ∗(U) : U open, E ⊂ U}. Let
ε > 0. Then ∃Ei = [ai, bi) such that E ⊂ ∪∞i=1Ei and

∑n
i=1 µ(Ei) < µ∗(E) + ε

2 .
i.e.,

∑∞
i=1(bi − ai) < µ∗(E) + ε

2 .

Ei ⊂ Ui = (ai − ε
2i+1 , bi). Let U = ∪∞i=1Ui, an open set. Then E ⊂ U and

µ∗(U) ≤
∑∞
i=(bi − ai) + ε

2 < µ∗(E) + ε. Hence µ∗(E) = inf {µ∗(U) : U open, E ⊂
U}. �

Proposition 3.9. Let E ⊆ R. Then the following are equivalent:

(1) E is (Lebesgue) measurable.
(2) Given ε > 0, ∃ an open set U such that E ⊂ U , µ∗(U \ E) < ε.
(3) Given ε > 0, ∃ a closed set F such that F ⊂ E, µ∗(E \ F ) < ε.
(4) ∃G, a Gδ set such that E ⊂ G, µ∗(G \ E) = 0.
(5) ∃F , an Fσ set such that F ⊂ E, µ∗(E \ F ) = 0.

Proof. We first show that (1) =⇒ (2) =⇒ (4) =⇒ (1). Suppose (1) holds.
First assume that µ∗(E) < ∞. For ε > 0,∃U open such that E ⊂ U and µ∗(U) <
µ∗(E) + ε. Since E is measurable, µ∗(U \E) = µ∗(U)− µ∗(E) < ε. If µ∗(E) =∞,
we can write E = ∪∞i=1Ei, µ

∗(Ei) < ∞, by σ finiteness. For each Ei, ∃Ui such
that µ∗(Ui \ Ei) < ε

2i . Let U = ∪∞i=Ui, which is open. A=Then, E ⊂ U and
µ∗(U \ E) ≤

∑∞
i=1 µ

∗(Ui \ Ei) <
∑∞
i=1

ε
2i = ε. Hence (2) holds.

Next, suppose (2) holds. Given E, choose Un open such that µ∗(Un \ E) < 1
n .

Let G = ∩∞n=1Un. Then E ⊂ G and µ∗(G \ E) ≤ µ∗(Un \ E) < 1
n∀n. Hence

µ∗(G \ E) = 0, i.e., (4) holds.

Finally, suppose (4) holds. µ∗(G \ E) = 0 =⇒ G \ E is measurable, since
µ∗ is a complete measure. G is Borel measurable since it is a Gδ set, and hence
measurable. Hence E = G \ (G \ E) is measurable, i.e. (1) holds.
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Finally, we show that (1) =⇒ (3) =⇒ (4). Suppose E is measurable. Then
Ec is measurable. Since (1) =⇒ (2), for ε > 0, ∃U open such that Ec ⊆ U and
µ∗(U \Ec) < ε. Let F = U c. Then F is closed and F ⊆ E. Since U \Ec = E \U c,
we get µ∗(E \ F ) = µ∗(E \ U c) = µ∗(U \ Ec) < ε.

Suppose (3) holds. Given E, choose Fn closed such that Fn ⊆ E and µ∗(E\Fn) <
1
n . Let F = ∪∞n=1Fn. Then F ⊆ E and µ∗(E \ F ) ≤ µ∗(E \ Fn) < 1

n ∀n. Hence
µ∗(E \ F ) = 0.

Suppose (5) holds. Since µ∗(E \ F ) = 0, E \ F is measurable. F is measurable
as it is an Fσ set. Hence E = (E \ F ) ∪ F is measurable. �

Let X = [0, 1], X1 = ( 1
3 ,

2
3 )), X2 = ( 1

9 ,
2
9 )∪( 7

9 ,
8
9 ), X3 the union of the four middle

third intervals of X \ (X1 ∪X2). Let C = X \ (∪∞n=1Xn). Then the following hold:

(1) Each Xn is open and hence C is closed.

(2) µ(X1) = 1
3 , µ(X2) = 2

9 , µ(X3) = 4
27 . In general, µ(Xn) = 2n−1

3n . Hence
µ(∪∞n=1Xn = 1 and µ(C) = 0. C can be thought of as the set of num-
bers between 0 and 1 such that 1 does not occur anywhere in its ternary
expansion.

(3) C is uncountable by Cantor’s diagonalisation,
(4) C is nowhere dense.

µ(C) = 0 implies that every subset of C is measurable. The cardinality of C is
c (continuum), hence the cardinality of Lebesgue measurable sets is 2c. However,
it can be shown that the cardinality of Borel measurable sets is c. Hence Borel
measurable sets are properly contained in Lebesgue measurable sets. In particular,
this means that the Borel measure on S(R) on R is not complete.

Let T : R → R be given by Tx = αx + β, α > 0. Then T is a bijection and
T−1x = x−β

α .

Let S = S(R) be the Borel σ-algebra. Let T (S) = {T (E) : E ∈ S}. Then T (S)
is a σ-algebra. Since T is a bijection, T (R) = R. T (A \ B) = T (A) \ T (B) and
T (∪iEi) = ∪iT (Ei).

Suppose E = [a, b) = T (F ), where F = [a−βα , b−βα ). Hence P ⊂ T (S) and thus

S ⊂ T (S). Similarly, S ⊂ T−1(S) and thus T (S) = S. Thus, E is a Borel set iff
T (E) is a Borel set.

Proposition 3.10. Let E ⊂ R. Then µ∗(T (E)) = αµ∗(E).

Proof. µ∗(T (E)) = inf {
∑
µ(Fi) : Fi ∈ P, T (E) ⊂ ∪Fi}. But Fi = T (Ei) for some

Ei ∈ P and Ei ⊃ E. Hence µ∗(T (E)) = inf {
∑
µ(T (Ei)) : Ei ∈ P, E ⊂ ∪Ei}. If

Ei = [a, b), T (Ei) = [αa + β, αb + β) and µ(T (Ei)) = α(b − a) = αµ∗(E). Hence
µ∗(T (E)) = αµ∗(E). �
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Now assume E ⊂ R is Lebesgue measurable. We claim that T (E) is Lebesgue
measurable. Let A ⊂ R. Then

µ∗(A ∩ T (E)) + µ∗(A ∩ (T (E))c) = µ∗(T (T−1 ∩ E)) + µ∗(T (T−1(A) ∩ Ec))
= α[µ∗(T−1(A) ∩ E) + µ∗(T−1(A) ∩ Ec)]
= αµ∗(T−1(A)) since E is Lebesgue measurable

= α
1

α
µ∗(A).

Remark 3.11. If α = 1, then all of the above goes through in Rn as well.

Remark 3.12. If α = 1, T (E + x) = T (E)∀E,∀x. That is, the Lebesgue measure
is translation invariant.

Theorem 3.13. Let ν be a Borel measure on RN such that

(1) ν(K) <∞ ∀K ⊂ Rn compact
(2) ν(E) = inf {ν(V ) : V open , E ⊂ V } ∀E Borel
(3) ν is translation invariant.

Then ∃ a constant c ∈ R such that ν = cµ, i.e. for all Borel measurable sets
E, ν(E) = cµ(E).

Proof. Let a = (a1, · · · , aN ) ∈ RN and δ > 0. Let Q(a, δ) =
∏N
i=1[ai, ai + δ).

Denote by Ωn the collection of all boxes of this form where δ = 2−n and a has
coordinates which are integral multiples of 2−n.

(1) If x ∈ RN , then x belongs to exactly one box of Ωn ∀n.
(2) Every open set is the countable disjoint union of boxes taken from Ω1 ∪

Ω2 ∪ · · · .
(3) Let Q = Q(a, 1). Then Q is the disjoint union of 2Nn identical boxes Q̃

from Ωn.

Since ν and µ are translation invariant, all these boxes have the same measure.
µ(Q) = 1. Let ν(Q) = c. Then

2Nnν(Q̃) = ν(Q) = c = cµ(Q) = c2Nnµ(Q̃).

Hence ν(Q̃) = cµ(Q̃). By (2), it follows that if U is open, ν(U) = cµ(Q). By the
second hypothesis, ν(E) = cµ(E). �

Theorem 3.14. Let A : Rn → Rn be linear. Then for all Borel sets E in Rn,
µ(A(E)) = |det A|µ(E).

Proof. (1) If A is singular, then A(E) ⊂ A(Rn) = a lower dimensional subspace
of Rn. Then µ(A(Rn)) = 0. Hence A(E) is Lebesgue measurable and
µ(A(E)) = 0 = |det A|µ(E).

(2) Let A be non-singular. Now E is Borel iff A(E) is Borel.
S = {E : A(E) is Borel} is a σ-algebra since E open iff A(E) open, E =
∪Ei, Ei disjoint, then A(E) = ∪A(Ei). Define ν(E) = µ(A(E)). Then
ν is a measure on S. K compact implies that A(E) is compact. Hence
ν(K) = µ(A(K)) <∞ and ν(E + x) = µ(A(E) + Ax) = µ(A(E)) = ν(E).
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Thus ν is translation invariant. E ⊂ V is open iff A(E) ⊂ A(V ) is open.
Hence

inf {ν(V ) : V ⊃ E, V open } = inf {µ(A(V )) : V ⊃ E}
= inf {µ(A(V )) : A(V ) ⊃ A(E)}
= µ(A(E))

= ν(E).

Hence ν = cAµ by Theorem 3.13. Claim: cAB = cAcB .

Exercise 3.15. (a) If A is orthogonal and E the unit ball. Show that
A(E) = E =⇒ cA = 1 = det A.

(b) A diagonal, A = diag (λ1, · · · , λn), λi > 0 ∀i and E = [0, 1]N . Then

A(E) =
∏N
i=1[0, λi], and µ(A(E)) =

∏N
i=1 λi = det A.

(c) A non-singular. Then A = RQ, where R is positive definite and Q
orthogonal. R can further be written as PTDP , where P is orthogonal
and D is diagonal. Then A = PTDPQ and cA = det D = |det A|.

�

We now construct a non-(Lebesge) measurable set. Let x, y ∈ [0, 1). Then

x+ y =

{
x+ y, x+ y < 1

x+ y − 1, x+ y ≥ 1

Let E ⊂ [0, 1). Then E + y = {x+ y : x ∈ E}.

Lemma 3.16. If E ⊂ [0, 1) is measurable, then E+y is measurable for all y ∈ [0, 1]
and µ(E + y) = µ(E).

Proof. For each y ∈ Y , let E1 = E ∩ [0, 1 − y) and E2 = E ∩ [1 − y, 1). They are
disjoint and µ(E) = µ(E1 + µ(E2). E1 + y = E1 + y and E2 + y = E2 + (y − 1).
Claim: (E1 +y)∩ (E2 +y) =. If not, suppose ∃a, b ∈ [0, 1) such that a ∈ E1, b ∈ E2

and a+ y = b+ y − 1. Then b− a = 1 which is a contradiction, since a, b ∈ [0, 1).
Hence

µ(E + y) = µ(E1 + y) + µ(E2 + y)

= µ(E1 + µ(E2)

= µ(E).

�

Let x, y ∈ [0, 1). Define a relation on [0, 1) by: x ∼ y ⇐⇒ x − y ∈ Q.
This is an equivalence relation. Thus, [0, 1) can be written as the disjoint union of
equivalence classes. Let P be the set made up of exactly one representative from
each equivalence class, using the axiom of choice.

Claim: P is not measurable. Let {ri} be an enumeration of the set in [0, 1) such
that r0 = 0. Let Pi = P + ri. The Pis are mutually disjoint, for if x ∈ Pi ∩ Pj ,
then x = ri + pi = rj + pj , pi, pj ∈ P =⇒ pi − pj ∈ Q =⇒ pi ∼ pj . For
each i, µ)Pi) = µ(P ) and ∪∞i=1Pi = [0, 1). If P is measurable, then

∑
µ(Pi) = 1, a

contradiction. Hence S̄ ( P(R).

Remark 3.17. (1) Let E ⊂ P be measurable and Ei = E + ri. The Eis are
disjoint measurable sets and µ(Ei) = µ(E). Then 1 ≥ µ(E) =

∑
µ(Ei).

Hence the only measurable subsets of P are of emasure 0.
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(2) Let A ⊂ [0, 1), µ(A) > 0 and Ei = A ∩ Pi. If all Eis are measurable, then
µ(A) =

∑
µ(Ei). But µ(Ei)0 bu the previous remark. Hence, one of the Eis

is not measurable. So every set of positive measure has a non-measurable
set.

4. Measurable Functions

Let X be a non-empty set and S be a σ-algebra on X. Then (X,S) is a measur-
able spaces and elements of S are called measurable sets. Suppose µ is a measure
on S. Then (X,S, µ) is called a measure space.

Definition 4.1. Let X,S) be a measurable space, and f : X → R ∪ {+∞} be an
extended real-valued function. Then f is said to be measurable if ∀α ∈ R, the set
{x : f(x) > α} ∈ S, i.e., f−1((α,∞]) ∈ S ∀α ∈ R.

Remark 4.2. Let X = R and f : X → R ∪ {±∞}. Then f is said to be Lebesgue
(respectively Borel) measurable if f−1((−∞,∞)) is a Lebesgue (respectively Borel)
measurable set.

Proposition 4.3. Let f be an extended real-valued function on a measurable space
(X,S). Then the following are equivalent:

(1) ∀α ∈ R, f−1((α,∞]) ∈ S.
(2) ∀α ∈ R, f−1([α,∞]) ∈ S.
(3) ∀α ∈ R, f−1([−∞, α)) ∈ S.
(4) ∀α ∈ R, f−1([−∞, α]) ∈ S.

Proof. (1) =⇒ (2) follows from f−1([α,∞]) = ∩nf−1((α − 1
n ,∞]). (2) =⇒ (3)

follows from f−1([−∞, α)) = f−1([α,∞]c) = f−1([α,∞])c. (3) =⇒ (4) follows
from f−1([∞, α]) = ∩nf−1([−∞, α+ 1

n )). (4) =⇒ (1) follows from f−1((α,∞]) =

f−1([−∞, α]c) = f−1([−∞, α])c. �

Corollary 4.4. If f is measurable, then:

(1) For α ∈ R ∪ {∞}, f−1({α}) is measurable.
(2) For V open in R, f−1(V ) is measurable.

Proof. (1) {∞} = ∩n[n.∞] and {−∞} = capn[−∞,−n]. For α ∈ R, {α} =
(−∞, α] ∩ [α,∞).

(2) (a, b) = [−∞, b) ∩ (a,∞] =⇒ f−1((a, b)) ∈ S =⇒ f−1(V ) ∈ S.

�

Remark 4.5. Let f : X → R. Then f is measurable iff f−1(U) is measurable for
all open sets U . This holds as f−1([−∞, α))− f−1((−∞, α)) ∈ S. But f−1({α}) ∈
S ∀α ∈ R 6=⇒ f is measurable.

Example 4.6. Let X = R and µ be the Lebesgue measure. Let E be a non-
measurable subset of [0, 1). Define

f(x) =


x, x ∈ E
−x, x ∈ [0, 1) \ E
−2, x /∈ [0, 1)
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Then

f−1({α}) =


R \ [0, 1), α = −2

{α}, −α ∈ [0, 1) \ E
{α}, α ∈ E
∅, otherwise

So the inverse of each singleton set is measurable. But {x : f(x) > 0} = f−1((0,∞]) =
E which is not measurable.

Exercise 4.7. (1) Let A ⊂ X. Define

χA(x) =

{
1, x ∈ A
0, x /∈ A

Then χA is measurable iff A is measurable.
(2) Every continuous function f : R → R is both Lebesgue and Borel measur-

able.

Proposition 4.8. Let f, g be measurable functions on (X,S) and c ∈ R. Then
cf, f + g and fg are all measurable.

Proof.

{x : xf(x) < α} =

{
{x : f(x) < α

c }, c > 0

{x : f(x) > α
c }, c < 0

In particular, −f is measurable.

{x : f(x) + g(x) < α} = {x : f(x) < α− g(x)}
= ∪r∈Q({x : f(x) < r}) ∩ {x : g(x) < α+ r}

Finally, we show that f measurable implies that f2 is measurable. This shows that

fg is measurable as fg = (f+g)2−(f−g)2
4 .

{x : f2 > α} =

{
∅, α ≤ 0

{x : f(x) >
√
α} ∪ {x : f(x) < −

√
α}, α > 0

�

Proposition 4.9. If f is measurable then so is |f |.

Proof. {x : |f(x)| < α} = {x : −α < f(x) < α}.
�

But the converse is not true.

Example 4.10. Let E be a non-measurable set. Let

f(x) =

{
1, x ∈ E
−1, x /∈ E

Definition 4.11. Max {f, g} = 1
2 (f+g+|f−g|} and Min {f, g} = 1

2 (f+g−|f−g|}.
Let f+ = max {f, 0} and f− = −min {f, 0}. Then f = f+−f− and |f | = f+ +f−.

Proposition 4.12. Let φ : R → R be Borel measurable and f : X → R be a
real-valued measurable function. Then φ ◦ f : X → R is measurable.



18 NOTES ON MEASURE THEORY

Proof. {x : φ(f(x)) > α} = f−1(φ−1((α,∞])). Now, φ−1((α,∞]) is a Borel set.
Hence it suffices to show that f measurable implies that f−1(E) is measurable for

all Borel sets E. Let S̃ = {E : f−1(E) is measurable}. Then S̃ is a σ-algebra
containing open sets and hence contains all Borel sets. �

Proposition 4.13. Suppose {fn} is a sequence of measurable functions. Let h(x) =
sup
n
fn(x) and g(x) = inf

n
fn(x). Then h and g are measurable.

Proof. The proof follows as

{x : h(x) > c} = ∪∞n=1{x : fn(x) > c}
and

{x : g(x) < c} = ∪∞n=1{x : fn(x) < c}.
�

Corollary 4.14. Suppose {fn} is a sequence of measurable functions. Then lim sup
n→∞

fn

and lim inf
n→∞

fn are measurable.

Proof. The proof follows as

lim sup
n→∞

fn(x) = inf
n

sup
m≥n

fm(x)

and
lim inf
n→∞

fn(x) = sup
n

inf
m≥n

fm(x)

�

Corollary 4.15. If {fn} is a sequence of measurable functions and fn → f , then
f is measurable.

Definition 4.16. A function of the form f =
∑n
i=1 αiχAi is said to be a simple

function.

Theorem 4.17. Let f be an extended real valued measurable function which is
non-negative. Then f is the increasing limit of non-negative simple functions, i.e.
∃fn simple such that fn ≥ 0, fn ≤ fn+1 ∀n and lim

n→∞
fn(x) = f(x)∀x.

Proof. Let n ∈ N. For i such that 1 ≤ i ≤ n 2n, define En,i = f−1([ i−1
2n ,

i
2n )) and

Fn = f−1([n,∞]). Then En,i, Fn are all measurable. Define

fn = (

n2n∑
i=1

i− 1

2n
χEn,i) + χFn .

Then fn ≥ 0, fn simple and fn ≤ f . In fact,

fn(x) =

{
n, f(x) ≥ n
i−1
2n , f(x) < n and f(x) ∈ [ i−1

2n ,
i

2n ).

Hence fn ≤ fn+1 and lim
n→∞

fn = f . �

Since every measurable function f can be written as the difference of two non-
negative functions, i.e. f = f+ − f−, we get the folloowing corollary.

Corollary 4.18. Every measurable function is the pointwise limit of simple func-
tions.
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4.1. The Cantor Function. Let C = [0, 1] and C be the Cantor set. Define

f0(x) = x ∀x ∈ X,

f1(x) =


x, x ∈ [0, 1

3 ]
1
3 , x ∈ [ 1

3 ,
2
3 ]

2(x− 2
3 ) + 1

3 , x ∈ [ 2
3 , 1]

f2(x) =



x, x ∈ [0, 1
9 ]

1
9 , x ∈ [ 1

9 ,
2
9 ]

2(x− 1
3 ) + 1

3 , x ∈ [ 2
9 ,

1
3 ]

1
3 , x ∈ [ 1

3 ,
2
3 ]

2(x− 2
3 ) + 1

3 , x ∈ [ 2
3 ,

7
9 ]

5
9 , x ∈ [ 7

9 ,
8
9 ]

4(x− 2
3 )− 1

3 , x ∈ [ 8
9 , 1]

Continuing in this fashion we get a sequence {fn} such that fn ≤ fn+1 ∀n, and

max |fn(x) − fn+1(x)| ≤ 2
3

n+1
. Hence ‖fn − fn+1‖∞ ≤ 2

3

n+1
, Hence {fn} is

uniformly Cauchy. Thus fn → f uniformly to a continuous function f . f is non-
decreasing and is constant on each interval in the complement of the Cantor set. f
is called the Cantor function.

Define ψ(y) = y + f(y). Then ψ is continuous, non-negative and strictly mono-
tonic. psi(0) = 0, ψ(1) = 2, and hence ψ : [0, 1]→ [0, 2] is 1−1 and onto. Let φ be its
inverse, i.e., x = φ(x)+f(φ(x)). Then φ is also monotonic; x ≥ y =⇒ φ(x) ≥ φ(y).
Now,

x− y = φ(x)− φ(y) + f(φ(x))− f(φ(y)),

and f(φ(x)) − f(φ(y)) ≥ 0. Hence |φ(x) − φ(y)| ≤ |x − y|, i.e. φ is Lipschitz
continuous. In particular, it is continuous.

Since ψ is 1 − 1, it maps disjoint sets into disjoint sets. Let I be an interval in
Cc. Let x ∈ I. Then ψ(x) = x + cI , where f takes the value cI on I. Hence ψ(I)
is a translate of I. Thus

µ(Cc) = µ(ψ(Cc))

= 1.

Hence µ(ψ(C)) = 1 as µ(ψ(X)) = 2. Let S be a non-measurable set contained
in ψ(C). Let M = ψ−1(S) ⊂ C. Then M is Lebesgue measurable since µ is
complete and µ(C) = 0. Claim: M is not Borel measurable. Suppose M were Borel
measurable.Then φ−1(M) is Borel measurable as φ is continuous. Then φ−1(M) is
Lebesgue measurable. But φ−1(M) = S. Hence we get a contradiction.

Let Φ = χM . Then Φ is Lebesgue measurable. Define η = Φ ◦ φ. η. Since ψ
is continuous, it is Lebesgue measurable. If η were measurable, then η−1({1}) is
measurable. But

η−1({1}) = {x : η(x) = 1}
= {x : Φ(φ(x)) = 1}
= φ−1(M)

= S,

which is not measurable. Hence the composition of two measurable functions need
not be measurable.

Definition 4.19. An occurrence is said to happen almost everywhere if it occurs
on a set E such that µ(Ec) = 0.
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Exercise 4.20. Are the following statements equivalent? Or does any one imply
the other?

(1) f is continuous almost everywhere (a.e).
(2) f = g almost everywhere, and g is continuous.

In fact, neither statement implies the other. To see that (1) 6=⇒ (2), let

f(x) =

{
0, x < 0

1, x ≥ 0

Then f is continuous almost everywhere. But for any g which is equal to f a.e., g
is not continuous. For (2) 6=⇒ (1), let f = χQ and g ≡ 0 on R. Then f = g a.e.
and g is continuous, but f is discontinuous everywhere.

Theorem 4.21 (Egoroff). Let (X,S, µ) be a measure space and µ(X) <∞. Sup-
pose {fn} is a sequence of measurable real valued functions converging pointwise to
a real-valued measurable function. Then given ε > 0,∃F ∈ S wtth µ(F ) < ε such
that fn → f uniformly on F c.

Proof. Let n,m ∈ N. Define

En,m =

∞⋂
i=n

{x : |fi(x)− f(x)| < 1

m
}

x ∈ En,m =⇒ ∀i ≥ n, |fi(x)− f(x)| < 1
m . Hence for each m ∈ N,

E1,m ⊂ E2,m ⊂ · · · ⊂ En,m ⊂ En+1,m ⊂ · · · .

For x ∈ X and m ∈ N,∃nm such that n ≥ nm =⇒ |fn(x)− f(x)| < 1
m .

=⇒ x ∈ Enm,m =⇒ X =

∞⋃
n=1

En,m ∀m ∈ N.

Now, µ(X) <∞ =⇒ ∃nm such that

µ(X \ Enm,m) = µ(X)− µ(Enm,m) <
ε

2m
.

Let

F =
∞⋃
m=1

(X \ Enm,m).

Then mu(F ) <∞ and

F c =

∞⋂
m=1

Enm,m.

Guven η > 0 choose m such that 1
m < η. Since x ∈ Enm,m, ∀n ≥ nm,

|fn(x)− f(x)| < 1

m
< η ∀x ∈ F c.

�

Remark 4.22. Egoroff’s theorem is not true if µ(X) = ∞. Here is a counter
example.
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Example 4.23. Let X = N,S = P(N) and µ be the counting measure. The only
measure zero set in this measure space is the empty set. Hence if Egoroff’s theorem
were true, pointwise convergence would imply uniform convergence everywhere. Let
fn = χ{1,2,··· ,n}. Then pointwise, fn → f ≡ 1, a constant. But for every n ∈ N and
m > n, fn(m) = 0 and fm(m) = 1. Hence fn 6→ f uniformly.

Definition 4.24. A sequence fn is said to converge to f almost uniformly if ∀ε >
0,∃F ∈ S such that µ(F ) < ε and fN → f uniformly on F c.

Theorem 4.25. fn → f almost uniformly =⇒ fn → f pointwise almost every-
where.

Proof. For each m ∈ N,∃Fm ∈ S with µ(Fm) < 1
m such that fn → f uniformly on

F cm. Let

F =

∞⋂
m=1

Fm.

Then µ(F ) = 0.

F c =
∞⋂
m=1

F cm.

Hence fn(x)→ f(x)∀x ∈ F c, i.e., fn → f almost everywhere. �

Theorem 4.26 (Lusin). Let f be a Lebesgue measurable function on [a, b] ⊂ R.
Then given ε > 0,∃ a continuous function φ such that µ({x : f(x) 6= φ(x)}) < ε
and sup |φ| ≤ sup |f |.

Proof. We first prove the theorem for characteristic functions. Let f = χE , E ∈ S.
Then ∃U open, F closed such that F ⊂ E ⊂ U and µ(U \E) < ε

2 and µ(E\F ) < ε
2 .

By Urysohn’s lemma, ∃φ continuous function with 0 ≤ φ ≤ 1 and

φ =

{
1, on F

0, on U c

Hence {x : f(x) 6= φ(x)} ⊂ U \ F and µ(U \ F ) < ε. Next, let f be a simple
function, i.e.,

f =

n∑
i=1

αiχAi .

For each i,∃φi such that µ({x : φi 6= χAi}) < ε
n . Let

φ =

n∑
i=1

αiφi.

Then φ is continuous and

{x : φ(x) 6= f(x)} ⊂
n⋃
i=1

{x : φi(x) 6= fi(x)}.

Hence µ({x : φ(x) 6= f(x)}) < ε. Next we consider a non-negative measurable
function. Then by Theorem 4.17, ∃fn ≥ 0 simple functions such that fn ↗ f .
BY Egoroff’s theorem, ∃F with µ(F ) < ε

4 and such that fn → f uniformly on
F c. By regularity of the Lebesgue measure, ∃C0 ⊂ F ⊂ [a, b] compact such that
µ(F c \ C) < ε

4 . Hence µ([a, b] \ C0) < ε
2 and fn → f uniformly on C0. Since each

fn is simple, ∃φn continuous such that µ({φn 6= fn}) < ε
2n+1 . Hence ∃Cn closed

such that {φn 6= fn} = [a, b] \Cn and µ([a, b] \Cn) < ε
2n+1 . Let C =

∞⋂
n=0

Cn. Then
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µ([a, b]\C) ≤ ε. C is compact and φn is continuous on C for each n. Also, φn = fn
for each n on C. Hence φn converges uniformly on C to a continuous function φ,
with φ = f on C. By Tietze extension theorem, φ can be extended to a continuous
function on [a, b]. Hence, µ({φ 6= f}) ≤ µ([a, b] \ C) < ε. �

Definition 4.27 (Convergence in measure). A sequence {fn} is said to converge
to f in measure if

∀ε > 0, lim
n→∞

µ({x : |fn(x)− f(x)| ≥ ε}) = 0.

{fn} is said to be Cauchy in measure if ∀ε > 0 and δ > 0, ∃N such that ∀n,m ≥
N,µ({x : |fn(x)− fm(x)| ≥ ε}) < δ.

Proposition 4.28. Let fn
µ−→ f and gn

µ−→ g. Then ∀α, β ∈ R, αfn + βgn
µ−→

αf + βg.

Proof.

|(αfn(x) + βgn(x))− (αf(x) + βg(x))| ≤ |α||fn(x)− f(x)|+ |β||gn(x)− g(x)|.

Hence

µ({x : |(αfn(x)+βgn(x))−(αf(x)+βg(x))| ≥ ε}) ≤ µ({x : |fn(x)−f(x)| ≥ ε

2α
})+µ({x : |gn(x)−g(x)| ≥ ε

2β
}).

�

Proposition 4.29. Let fn → f . Then |fn| → |f |.

Proof. The proof follows since ||fn(x)− |f(x)|| ≤ |fn(x)− f(x)|. �

Proposition 4.30. Let µ(X) < ∞ and fn, f be real valued functions. Suppose

fn
µ−→ f and gn

µ−→ g. Then fngn
µ−→ fg.

Proof. It suffices to show that f2
n

µ−→ f2. Suppose first that fn
µ−→ 0.

µ({x : |fn(x)|2) ≥ ε} ≤ µ({x : |fn(x)| ≥
√
ε}).

In general, if fn
µ−→ f , then fn − f

µ−→ 0. Let En = {x : |f(x)| > n}. Then
En ↘ ∅. Since µ(X) < ∞, lim

n→∞
µ(En) = 0. Given δ > 0, choose m ∈ N such that

µ(En) < δ ∀n ≥ m. On Ecm, |f | ≥ m. Now,

{x : |fn(x)f(x)−f2(x)| ≥ ε} = {x : |fnf(x)−f2(x)| ≥ ε}∩Em∪{x : |fnf(x)−f2(x)| ≥ ε}∩Ecm.

On Ecm, |fnf − f2| ≤ |f ||fn − f | ≤ m|fn − f |. Hence, |fn − f | ≥ ε
m on the set

Ecm ∩ {x : |fnf − f2| ≥ ε}. Hence,

µ({x : |fnf − f2| ≥ ε}) < δ + µ({x : |fn − f | ≥
ε

m
}).

Hence fnf
µ−→ f2. Now (fn − f)2 = f2

n − 2fnf + f2 = (f2
n − f2) + 2(−fnf + f2).

Hence f2
n − f2 µ−→ 0. �

Example 4.31. Proposition 4.30 is not true if µ(X) =∞. Let X = N,S = P(N)
and µ be the counting emasure. Let

fn(k) =

{
1
n , 1 ≤ k ≤ n
0, k > n
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Then fn → 0 uniformly, hence fn
µ−→ 0. (This is true since {x : |fn(x) − f(x)| ≥

ε} = φ for n large. Next, let g(x) ≡ n. Then for ε < 1, fng(n) = 1. Hence
µ({x : |fng(x)| ≥ ε}) ≥ 1∀n. Hence fng does not converge to 0 in measure.

Proposition 4.32. Let µ(X) < ∞. Suppose {fn} is a sequence of real valued

functions and fn → f almost everywhere, f a real valued function. Then fn
µ−→ f .

Proof. Let D = {x : fn(x) 9 f(x)}. Then µ(D) = 0.

Let ε > 0 and Em(ε) = {x : |fm(x)− f(x)| ≥ ε}. Then

D =
⋃
ε≥0

∞⋂
n=1

∞⋃
m=n

Em(ε)

=
⋃
ε≥0

lim sup
n→∞

En(ε).

Since µ(D) = 0, ∀ε > 0, µ({ lim sup
n→∞

En(ε)}) = 0. Since µ(X) <∞,

0 = µ({ lim sup
n→∞

En(ε)})

≥ lim sup µ(En(ε))

≥ lim inf µ(En(ε))

≥ 0.

Hence lim
n→∞

µ(En(ε)) = 0. That is, fn
µ−→ f . �

Example 4.33. Proposition 4.32 is not true if µ(X) = infty. Let X = N,S =

P(N) and µ be the counting measure. fn
µ−→ f ⇐⇒ fn → f uniformly. Let

fn = χ{1,2,··· ,n}. Then fn → f ≡ 1 pointwise, but not uniformly.

Example 4.34. Convergence in measure does not imply convergence almost ev-
erywhere, even in a finite measure space. Let X = [0, 1], mu be the Lebesgue
measure. Let χin = χ[ i−1

n , in ]. Let x ∈ [0, 1] and n ∈ N. Consider the sequence

{χ1
1, χ

1
2, χ22, χ31, χ2

3, χ
3
3, · · · }. Then ∃i such that χin(x) = 1 and ∃j such that

χjn(x) = 0. Hence this sequence does not converge for any x. But it converges
in measure since µ({x : |χin(x)| ≥ ε}) = 1

n → 0.

Lemma 4.35 (Borel-Cantelli). Let {Ek} be a sequence of measurable sets such

that
∞∑
i=1

µ(Ei) <∞. Then except on a set of measure 0, every x belongs to at most

finitely many Eks.

Proof. Let E = {x : x belongs to infinitely many Ek}. Then E =
∞⋂
n=1

∞⋃
m=n

Em.

Hence µ(E) ≤ µ(
∞⋃
m=n

Em) ≤
∞∑
m=n

µ(Em)∀n. Hence µ(E) = 0. �

Proposition 4.36. Let fn
µ−→ f . Then there exists a subsequence which converges

to f almost everywhere.

Proof. Let En,m = {x : |fn(x) − f(x)| ≥ 1
m}. Then ∀m, ∃n0(m) such that ∀n ≥

n0(m), µ(En,m) < 1
2m . Then

∞∑
m=1

µ(En0(m),m) <
∞∑
m=1

1
2m < ∞. By the Borel-

Cantelli lemma, ∃E with µ(E) = 0 such that ∀x ∈ Ec, x belongs to at most
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finitely many sets En0(m),m. That is, ∀x ∈ Ec,∃N (that depends on x) such that

if m ≥ N , then x /∈ En0(m),m. That is, ∀m ≥ N, |fn0(m)(x) − f(x)| < 1
m . That is,

fn0(m)(x)→ f(x)∀x ∈ Ec, µ(E) = 0. �

Proposition 4.37. If fn
µ−→ f , then {fn} is Cauchy in measure. If also fn

µ−→ g,
then f = g almost everywhere.

Proof. The proof of the first part follows since {x : |fn(x) − fm(x)| ≥ ε} ⊆ {x :

|fn(x) − f(x)| ≥ ε
2} ∪ {x : |fm(x) − f(x)| ≥ ε

2}. Suppose fn
µ−→ to f and g.

Then for ε >, µ({x : |fn(x) − g(x)| ≥ ε}) ≤ µ({x : |fn(x) − f(x)| ≥ ε
2}) + µ({x :

|fn(x)− g(x)| ≥ ε
2})∀n. Taking the limit as n→∞, we get µ({x : |f(x)− g(x)| ≥

ε}) = 0∀ε > 0. �

Proposition 4.38. Suppose {fn} is Cauchy in measure. Then ∃ a subsequence
such that {fnk} is almost uniformly Cauchy.

Proof. Given k ∈ N, ∃n(k) such that ∀n,m ≥ n(k), µ({x : |fn(x)−fm(x)| ≥ 1
2k
}) <

1
2k

. Let

n1 = n(1) ≥ 1

n2 = max {n1 + 1, n(2)} ≥ 2

n3 = max {n2 + 1, n(3)} ≥ 3

and so on. Let Ek = {x : |fnk(x) − fnk+1
(x)| ≥ 1

2k
}. Then µ(Ek) < 1

2k
. Given

δ > 0, choose k such that 1
2k−1 < δ. Let F = Ek ∪ Ek+1 ∪ · · · . Then µ(F ) ≤

∞∑
i=1

µ(Ei) = 1
2k−1 < δ. Let ε > 0. Choose i ≥ k such that 1

2i−1 < ε. Let i ≤ l ≤

m,x ∈ F c =
⋂
j=k

∞Ecj . Then

|fnl(x)− fnm(x)| ≤
m−1∑
j=l

|fnj (x)− fnj+1
(x)|

<

∞∑
j=l

1

2j

=
1

2l−1

<
1

2i−1

< ε.

Hence {fnk} is Cauchy on F c and µ(F ) < δ.

�

Proposition 4.39. Suppose {fn} is Cauchy in measure. Then there exists f mea-

surable such that fn
µ−→ f .

Proof. By Proposition 4.1, let {fnk} be a subsequence which is almost uniformly
Cauchy. Then {fnk} is Cauchy almost everywhere. Hence there exists a measurable
function f such that fnk → f almsot everywhere. But this implies that fnk → f
almost uniformly. Now, {x : |fn(x)− f(x)| ≥ ε} ⊆ {x : |fn(x)− fnk(x)| ≥ ε

2} ∪ {x :
|fn(x) − f(x)| ≥ ε

2}. Let η > 0. Then ∃N1 ∈ N such that n, nk ≥ N1 ⇒ µ({x :
|fn(x)− fnk(x)| ≥ ε}) < η

2 since {fn} is Cauchy in measure. Also, fnk → f almost
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uniformly implies that there exists a set E of measure less than η
2 and N2 ∈ N such

that ∀nk ≥ N2, |fnk(x)−f(x)| < ε on Ec. That is, ∀nk ≥ N2, {x : |fnk(x)−f(x)| ≥
ε} ⊂ E. Take N = max {N1, N2}. Then ∀n ≥ N , µ({x : |fn(x)− f(x)| ≥ ε}) < η.

Hence fn
µ−→ f . �

Proposition 4.40. Suppose fn → f almost uniformly. Then fn
µ−→ f .

Proof. Let ε, δ > 0. Then ∃F , µ(F ) < δ such that fn → f uniformly on F c.
Then ∃n0(ε) such that ∀n ≥ n0(ε) and ∀x ∈ F c, |fn(x) − f(x)| < ε. That is,
∀n ≥ n0(ε), {x : |fn(x) − f(x)| ≥ ε} ⊆ F . Hence µ({x : |fn(x) − f(x)| ≥ ε}) < δ.

Hence lim
n→∞

µ({x : |fn(x)− f(x)| ≥ ε}) = 0. That is, fn
µ−→ f . �

Finally we have the following implications:

Convergence almost everywhere
µ(X)<∞
=====⇒

Egoroff
Convergence almost uniformly⇒ Con-

vergence almost everywhere.

Convergence almost everywhere
µ(X)<∞
=====⇒ Convergence in measure

subsequence
=======⇒ Con-

vergence almost everywhere.

Convergence in measure
subsequence
=======⇒ Convergence almost uniformly⇒ Convergence

in measure.

5. Integration

Let (X,S, µ) be a measure space. Suppose φ is a function on X such that
its range is a finite set {α1, · · · , αn} with each αi ≥ 0. Let Ai = φ−1(αi). Then

φ =
n∑
i=1

αiχAi where the Ais are disjoint. Such a function is called a simple function.

Define the integral of φ as
∫
X

φdµ =
n∑
i=1

αiµ(Ai).

If φ =
m∑
j=1

βjχBj , where the Bjs are disjoint, then each Bj is contained in some

Ai and in the case βj = αi. Ai =
⋃

Bj⊂Ai
Bj . Hence µ(Ai) =

∑
Bj⊂Ai

µ(Bj). Hence

n∑
i=1

αiµ(Ai) =
m∑
j=1

βjµ(Bj).

Now, let us consider the case of general Ei which need not be disjoint. Suppose

φ =
N∑
i=1

ciχEi . Let Ai, · · · , An ⊂ X. Let Aε =

{
A, ε = 1

Ac, ε = −1

Let ε = (ε1, · · · , εn), εi = ±1 and ε0 = (−1, · · · ,−1). Let Aε =
⋂
i=1

6nAε1i ,

Aε0 =
n⋂
i=1

Aci =
n⋃
i=1

(Ai)
c. Now ε = η ⇐⇒ εi = ηi ∀i. ε 6= η ⇒ Aε ∩ Aη = ∅. We

claim that Ai =
⋃

εi=1 and ε 6=ε0
Aε. Clearly,

⋃
εi=1

Aε ⊂ Ai. Conversely, if x ∈ Ai. Let

εk =

{
+1, x ∈ Ak (Hence εi = 1)

−1, x /∈ Ak.
.
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Let ε = (εk). Then x ∈ Aε. Aε are disjoint. φ =
m∑
i=1

ciχEi . Now, Ei =⋃
εi=1 and ε 6=ε0

Eε, where the Eε are disjoint. Hence χEi =
∑

εi=1 and ε 6=ε0
χEε . Hence

φ =
m∑
i+1

ci
∑

εi=1 and ε6=ε0
χEε =

∑
ε6=ε0

m∑
i=1 and εi=1

χEε .

Call
m∑

i=1,εi=1

ci as c(ε). We now have a disjoint partition. Hence, by definition,

∫
X

φdµ =
∑
ε6=ε0

c(ε)µ(Eε)

=
∑
ε6=ε0

(

m∑
i=1,εi=1

ci)µ(Eε)

=

m∑
i=1

ci
∑
εi=1

µ(Eε)

=

m∑
i=1

ciµ(Ei).

So we have proved that the definition holds even when Ei are not disjoint. If

φ =
n∑
i=1

αiχAi and E ⊂ X, then
∫
E

φdµ =
n∑
i=1

αiµ(Ai ∩ E). This can be shown to

be equal to
∫
X

φχE dµ.

Now, let f ≥ 0 be a measurable function. Let E ⊂ X. Define
∫
E

f dµ =

sup
φ simple, 0≤φ≤f

∫
E

φdµ. It can be seen that the two definitions of integration coincide

for simple functions.

Proposition 5.1. Let E ⊆ X. Then

(1) 0 ≤ f ≤ g ⇒
∫
E

f dµ ≤
∫
E

g dµ.

(2) A ⊆ B, f ≥ 0⇒
∫
A

f dµ ≤
∫
B

f dµ.

(3) f ≥ 0, 0 ≤ c <∞⇒
∫
E

cf dµ = c
∫
E

f dµ.

(4) f ≡ 0 on E ⇒
∫
E

f dµ.

(5) µ(E) = 0, f ≥ 0⇒
∫
E

f dµ = 0.

(6)
∫
E

f dµ =
∫
X

fχE dµ.

Proposition 5.2. (1) Let φ ≥ 0 be simple. Define ν(E) =
∫
E

φdµ, E ∈ S.

Then ν is a measure on S.
(2) If φ, ψ ≥ 0 are simple functions, then

∫
X

(φ+ ψ) dµ =
∫
X

φdµ+
∫
X

ψ dµ.
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Proof. (1) It is clear that ν ≥ 0 and ν(∅) = 0. We need only prove countable

additivity. Let E =
∞⋃
i=1

Ei, disjoint union. Let φ =
n∑
i=1

αiχAi . Then

ν(E) =

∫
E

φdµ

=

n∑
i=1

αiµ(Ai ∩ E)

=

n∑
i=1

αi

∞∑
j=1

µ(Ai ∩ Ej)

=

∞∑
j=1

n∑
i=1

αiµ(Ai ∩ Ej)

=

∞∑
j=1

∫
Ej

φdµ

=

∞∑
j=1

ν(Ej).

(2) Let φ =
n∑
i=1

αiχAi and ψ =
m∑
j=1

βjχBj . Let Eij = Ai ∩Bj . Then∫
Eij

(φ+ ψ) dµ = (αi + βj)µ(Eij)

=

∫
Eij

φdµ+

∫
Eij

ψ dµ.

Since X is the disjoint union of sets of the form Eij , the result follows from
(1).

�

Theorem 5.3 (Lebesgue Monotone Convergence). Let {fn} be a sequence of non-
zero measurable functions such that

(1) 0 ≤ f1(x) ≤ f2(x) ≤ · · · ∀x
(2) fn → f pointwise almost everywhere.

Then
∫
X

fn dµ→
∫
X

f dµ.

Proof. Since fn ≤ f ∀n, by (1) of Proposition 5.1,
∫
X

fn dµ ≤
∫
X

f dµ ∀n. Let

α = sup
n

∫
X

fn dµ. Then α ≤
∫
X

f dµ. Now, let φ be a simple function such that

0 ≤ φ ≤ f . Let 0 < c < 1. Define En = {x : fn(x) ≥ cφ(x)}. Then Ei ⊂ E2 ⊂ · · · .
If f(x) = 0, then φ(x) = 0 ⇒ x ∈ E1. If f(x) > 0, then cφ(x) < f(x). Since

fn(x)→ f(x),∃n such that cφ(x) ≤ fn(x) ≤ f(x). Hence x ∈ En. So X =
∞⋃
n=1

En.

Now
∫
X

fn dµ ≥
∫
En

fn dµ ≥ c
∫
En

φdµ = cν(En). where ν is a measure as defined
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in Proposition 5.2. Hence α ≥ c lim
n→∞

ν(En) = cν(X) = c
∫
X

φdµ. Since this is

true for every simple function φ such that 0 ≤ φ ≤ f , we get α ≥ c
∫
X

f dµ. As

c→∞, α ≥
∫
X

f dµ. Hence lim
n→∞

∫
X

fn dµ = sup
n

∫
X

fn dµ =
∫
X

f dµ. �

Proposition 5.4. Let fn ≥ 0 be measurable. Then f(x) =
∞∑
n=1

fn(x) is measurable

and non-negative. Further,
∫
X

f dµ =
∞∑
n=1

∫
X

fn dµ.

Proof. Let φ1
n ↗ f1, 0 ≤ φ1

n simple, and φ2
n ↗ f2, 0 ≤ φ2

n, simple. Then φ1
n + φ2

n ↗
f1 +f2. Since

∫
X

(φ1
n+φ2

n) dµ =
∫
X

φ1
n dµ+

∫
X

φ2
n dµ, we get

∫
X

(f1 +f2) dµ =
∫
X

f1 dµ+∫
X

f2 dµ. By induction,
∫
X

(f1 + · · ·+fn) dµ =
n∑
i=1

∫
X

fi dµ. Let gn =
n∑
i=1

. Then gn ≥ 0

and gn ↗ f . By the monotone convergence theorem,
∫
X

f dµ =
∞∑
i=1

∫
X

fi dµ. �

Example 5.5. Let X = N,S = P(N) and µ be the counting measure. Let E =
{n1, · · · , nk} be a finite set. Let f : X → R a be a non-negative function. It is

then a sequence. f =
k∑
i=1

f(ni)χ{ni}. Then
∫
E

f dµ =
k∑
i=1

f(ni). Suppose f ≥ 0 on

N. Then we can think of fn = f � {1, · · · , n}. Then fn ↗ f . By the monotone
convergence theorem, ∫

X

f dµ =

∞∑
n=1

f(n).

Example 5.6. Fix x0 ∈ X. Let

δx0(E) =

{
1, , x0 ∈W
0, x0 /∈ E

Let φ =
n∑
i=1

αiχEi , Ei disjoint. Then x0 belongs to at most one Ei. In this case,∫
X

φdµ = αi, i.e.,
∫
X

φdµ = φ(x0).

For f ≥ 0, consider a sequence of simple functions {φn} that increase to f . Then∫
X

f dµ = lim
∫
X

φn dµ = lim φn(x0) = f(x0).

Example 5.7. Let {aij} be a double sequence of non-negative numbers. Then
∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij .

Let X = N,S = P(N) and µ be the counting measure. Let fi(j) = aij and
f =

∑∞
i=1 fi. By Proposition 5.4,∫

X

f dµ =

∞∑
i=1

∫
X

fi dµ.

That is,
∞∑
j=1

f(j) =

∞∑
i=1

∫
X

fi dµ.
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Hence
∞∑
j=1

∞∑
i=1

fi(j) =

∞∑
i=1

∞∑
j=1

fi(j).

Example 5.8. Consider I =
1∫
0

sin−1 x√
1−x2

dx. Taking the transformation y = sin−1 x,

we get I = π2

8 .

Now, the Taylor expansion of sin−1 x = x + 1
2
x3

3 + 1·2
2·4

x5

5 + 1·3·5
2·4·6

x7

7 + · · · By
Proposition 5.4, we get

I =

1∫
0

x√
1− x2

+

∞∑
n=1

1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
1

2n+ 1

1∫
0

x2n+1

√
1− x2

dx

= 1 +

∞∑
n=1

1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
1

2n+ 1

2n · (2n− 1) · · · 2
(2n+ 1) · (2n− 1) · · · 3

=

∞∑
n=0

1

(2n+ 1)2

.

Hence π2

8 =
∞∑
n=0

1
(2n+1)2 . If S =

∞∑
n=1

, then we get S = π2

6 .

Theorem 5.9 (Fatou’s Lemma). Let fn ≥ 0 be a sequence of measurable functions.
Then ∫

X

( lim inf
n→∞

fn) dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Proof. Let gk(x) = inf
i≥k

fi(x). Then gk ≥ 0 and lim
k→∞

gk = lim inf
n

fn. By the

Monotone convergence theorem, we get∫
X

( lim inf
n→∞

fn) dµ = lim
n→∞

∫
X

gk dµ.

But ∫
X

gk dµ ≤ inf
i≥k

∫
X

fi dµ.

Hence the result follows. �

Example 5.10. Strict inequality can occur in Fatou’s lemma. Let X = R, µ be
the Lebesgue measure. Let fn = χ[n,n+1]. Then lim

n→∞
fn(x) = 0 ∀x ∈ R, but∫

X

fn dµ = 1∀n.

Proposition 5.11. Let f ≥ 0 be measurable. Define

ν(E) =

∫
E

f dµ.

Then ν is a measure. Further, if g ≥ 0,∫
X

g dν =

∫
X

fg dµ.

The notation used is dν = fdµ, or dν
dµ = f .
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Proof. Clearly, ν ≥ 0 and ν(∅) = 0. Suppose E =
∞⋃
i=1

Ei disjoint union. Then

ν(E) =
∫
E

f dµ =
∫
X

fχE dµ. Now, χE =
∞∑
i=1

χEi . Hence

∫
X

fχE dµ =

∫
X

∞∑
i=1

fχEi dµ

=

∞∑
i=1

∫
X

fχEi dµ

=

∞∑
i=1

∫
Ei

f dµ

=

∞∑
i=1

ν(Ei).

Next, let g = χE . Then ∫
X

g dν =

∫
X

χE dν

= ν(E)

=

∫
E

f dµ

=

∫
X

fχE dµ

=

∫
X

fg dµ.

By linearity, the above also holds for simple functions, and by the Monotone con-
vergence theorem, it holds for all positive measurable functions. �

Example 5.12. Let f ≥ 0 and
∫
X

f dµ = 0. Then f = 0 almost everywhere. Let

En = {x : f(x) ≥ 1
n}, Then E = {x : f(x) > 0} =

∞⋃
n=1

En. Now 0 =
∫
X

f dµ ≥∫
En

fn dµ ≥ 1
nµ(En). Hence µ(En) = 0∀n⇒ µ(E) = 0.

Definition 5.13. A function f is said to be integrable if
∫
X

|f | dµ < ∞. A real-

valued f can be written as f+−f−, where f+, f− ≥ 0. Hence we define the integral
of f as follows: ∫

X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ.

Suppose f is a complex valued function. Then f = u + iv, where u, v are real-
valued functions. Then

∫
X

|f | dµ < ∞ ⇐⇒
∫
X

|u| dµ < ∞ and
∫
X

|v| dµ < ∞.

Define ∫
X

f dµ =

∫
X

u dµ+ i

∫
X

v dµ.



NOTES ON MEASURE THEORY 31

Theorem 5.14. Let f, g be complex integrable functions and α, β ∈ C. Then
αf + βg is integrable and∫

X

αf + βg dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

Proof. |αf + βg| ≤ |α||f | + |β||g| ⇒ αf + βg is integrable. It suffices to show the
following:

(1)
∫
X

(f + g) dµ =
∫
X

f dµ+
∫
X

g dµ ∀f, g real

(2)
∫
X

αf dµ = α
∫
X

f dµ ∀α ∈ C.

Let f, g be real valued and h = f + g. Then h+ − h− = f+ − f− + g+ − g−. That
is, h+ + f− + g− = h− + f+ + g+, where each term is non-negative. Hence,∫

X

h+ dµ+

∫
X

f− dµ+

∫
X

g− dµ =

∫
X

h− dµ+

∫
X

f+ dµ+

∫
X

g+ dµ.

That is, ∫
X

h+ dµ−
∫
X

h− dµ =

∫
X

f+ dµ−
∫
X

f− dµ+

∫
X

g+ dµ−
∫
X

g− dµ

as required. Next, let α ≥ 0. Then
∫
X

αf dµ =
∫
X

(αf)+ − (αf)− dµ =
∫
X

αf+ dµ −∫
X

αf− dµ = α(
∫
X

f+ dµ−
∫
X

f− dµ) = α
∫
X

f dµ.

Now, −f = f− − f+. Hence
∫
X

−f dµ =
∫
X

f− dµ−
∫
X

f+ dµ = −
∫
X

f dµ.

Finally, ∫
X

if dµ =

∫
X

i(u+ iv) dµ

=

∫
X

iu− v dµ

= −
∫
X

v dµ+ i

∫
X

u dµ

= i(

∫
X

u dµ+ i

∫
X

v dµ)

= i

∫
X

f dµ.

�

Theorem 5.15. |
∫
X

f dµ| ≤
∫
X

|f | dµ.

Proof. Let α =
∫
X

f dµ. Then |α|eiθ = α, for some θ ∈ [0, 2π]. That is,

|
∫
X

f dµ| = e−iθ
∫
X

f dµ =

∫
X

e−iθf dµ. (6)
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Let g = e−iθf = u+ iv. But by (6), we get
∫
X

g dµ =
∫
X

e dµ. Also, u ≤ |u| ≤ |g| =

|f |. Hence |
∫
X

f dµ| ≤
∫
X

|f | dµ. �

Theorem 5.16 (Dominated Convergence Theorem). Let fn → f almost every-
where and suppose |fn| ≤ g almost everywhere, where g is an integrable function.
Then

lim
n→∞

∫
X

|fn − f | dµ = 0.

Hence,

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Proof. ‖fn| ≤ g ∀n ⇒ |f | ≤ g. Hence |fn − f | ≤ 2g. Thus, 2g − |fn − f | ≥ 0. By
Fatou’s lemma,∫

X

lim
n→∞

(2g − |fn − f | dµ ≤ lim inf
n→∞

2g − |fn − f | dµ.

Hence ∫
X

2g dµ ≤ lim inf
n→∞

∫
X

2g dµ−
∫
X

|fn − f | dµ

=

∫
X

2g dµ− lim sup
n→∞

∫
X

|fn − f | dµ.

This implies that lim sup
n→∞

∫
X

|fn − f | dµ ≤ 0, since g is integrable. Hence we get

0 ≤ lim inf
n→∞

∫
X

|fn − f | dµ ≤ lim sup
n→∞

∫
X

|fn − f | dµ ≤ 0.

Hence

lim
n→∞

∫
X

|fn − f | dµ = 0.

�

Example 5.17. Consider N,P(N) and the counting measure.

(1) Let

fn(k) =

{
1
n , 1 ≤ k ≤ n
0, k > n

Then fn → 0 uniformly, but
∫
N
fn dµ = 1∀n. But in this case, fns are not

bounded by an integrable function.

Let fn(k) =

{
1
k , 1 ≤ k ≤ n
0, k > n

Then fn → f , where f(k) = 1
k ∀k, which is not

integrable. However, by Montonoce convergence theorem, fn ↗ f .

Theorem 5.18. Let f be a bounded function on [a, b]. Then
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(1) If f is Riemann integrable, then it is Lebesgue integrable, and

b∫
a

f(x) dx =

∫
[a,b]

f dµ

where µ is the Lebesgue measure.
(2) f is Riemann integrable iff f is continuous almost everywhere.

Proof. Let {Pk} be a sequence of partitions of [a, b] such that the mesh ∆Pk =
max

1≤i≤n
|xk − xk−1| → 0. Each Pk+1 is a refinement of Pk. Let Pk = {a = x0 < x1 <

· · · < xn = b}. Define functions Uk, Lk as follows:

Uk(a) = Lk(a) = f(a)

and
Uk(x) = Mi

Lk(x) = mi

if x ∈ [xi−1, xi] and Mi = sup
x∈[xi−1,xi]

f(x) and mi = inf
x∈[xi−1,xi]

f(x).

Now
∫

[a,b]

Uk dµ = U(P, f) and
∫

[a,b]

Lk dµ = L(P, f). Also,

U1(x) ≥ U2(x) ≥ · · · ≥ f(x) ≥ · · · ≥ L2(x) ≥ L1(x). (7)

Since f is bounded, we have
∫

[a,b]

U1 dµ < ∞. Now, Uk → U ≥ f , Lk → L ≤ f ,

and by the dominated convergence theorem, all the functions in (7) are integrable.
Further,

∫
[a,b]

Uk dµ→
∫

[a,b]

U dµ and
∫

[a,b]

Lk dµ→
∫

[a,b]

Ldµ. Since f is Riemann inte-

grable,
∫

[a,b]

Uk dµ = U(Pk, f)→
b∫
a

f(x) dx as ∆Pk → 0 and
∫

[a,b]

Lk dµ = L(Pk, f)→

b∫
a

f(x) dx as ∆Pk → 0. Hence

b∫
a

f(x) dx =

∫
[a,b]

U dµ ≥
∫

[a,b]

f dµ ≥
∫

[a,b]

Ldµ =

b∫
a

f(x) dx.

Hence,
∫

[a,b]

f dµ =
b∫
a

f(x) dx if f is Riemann integrable. Also, f = U = L almost

everywhere. By further throwing away the partition points, f is continuous almost
everywhere.

Conversely, if f is continuous almost everywhere, we get f = U = L at all
those points. f continuous at a point x implies that for ε > 0,∃δ > 0 such that
|x − z| < δ ⇒ |f(x) − f(z)| < ε

2 . Choose k such that ∆Pk < δ. Take x a

point that is not a partition point of Pk = {a = xk0 < xk1 < · · · < xkn = b}.
Then x ∈ [xki−1, x

k
i ] for some i. Now, for each z ∈ [xki−1, x

k
i ], |f(x) − f(z)| < ε

2 .
Hence |Mi − f(x)| ≤ ε

2 and |mi − f(x)| ≤ ε
2 . So, |Mi − mi| ≤ ε. This, Uk, Lk

tend to each other and U = L = f . If f = U = L, then by the dominated
convergence theorem,

∫
[a,b]

Uk dµ →
∫

[a,b]

f dµ and
∫

[a,b]

Lk dµ →
∫

[a,b]

f dµ. Hence,

|
∫

[a,b]

Uk dµ−
∫

[a,b]

Lk dµ| → 0. �
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Example 5.19. Let X = [0,∞) with Lebesgue measure. Let f(x) = sin x
x . Then

the Riemann integral of f exists and is finite (equal to π
2 ). However, f is not

Lebesgue integrable, i.e.,
∞∫
0

| sin xx | dx = ∞.
∞∫
0

| sin xx | dx ≥
∞∑
n=1

nπ+π
2∫

nπ+π
4

| sin xx | dx. On

[nπ+ π
4 , nπ+ π

2 ], | sinx| ≥ 1√
2

and x = |x| ≤ nπ+ π
2 = (2n+1)π2 , hence 1

|x| ≥
2

π(2n+1 .

Thus
∞∫

0

| sinx
x
| dx ≥

∞∑
n=1

√
2

π

1

(2n+ 1)

π

4
=

1

2
√

2

∞∑
n=1

1

2n+ 1
=∞.

Example 5.20. (1) Let X = (0, 1) and f(x) = 1√
x

. Let

fn(x) =

{
0, 0 < x < 1

n
1√
x
, 1
n < x < 1

Then {fn} increases to f . By the monotone convergence theorem,

1∫
0

f(x) dx = lim
n→∞

1∫
0

fn(x) dx

= lim
n→∞

1∫
1
n

1√
x
dx

= lim
n→∞

[2
√
x]11

n

= lim
n→∞

[2− 2√
n

]

= 2.

(2) Let X = (1,∞) and f(x) = 1√
x

. Let

fn(x) =

{
1√
x
, x ∈ (1, n)

0, x ∈ [n,∞)

Then {fn} increases to f . Hence
∞∫
1

1√
x
dx = lim

n→∞

n∫
1

1√
x
dx = lim

n→∞
[2
√
x]n1 =

lim
n→∞

[2
√
n− 2] =∞.

Example 5.21. Let f : R→ R be integrable and t ∈ R be fixed. Then
∞∫
∞

f(x+ t) dx =

∞∫
∞

f(x) dx.

First, let f = χE . Then

f(x+ t) =

{
1, x+ t ∈ E
0, x+ t /∈ E

= χE−t(x)

Hence
∞∫
∞

f(x+ t) dx = µ(E − t) = µ(E) =

∞∫
∞

f(x) dx.

By linearity, the result is true for simple functions, by the monotone convergence
theorem for non-negative functions, and then by linearity for complex valued func-
tions.



NOTES ON MEASURE THEORY 35

Example 5.22. Let f : [0, 1]× [0, 1]→ R. Suppose

(1) f is measurable with respect to x for each fixed t.
(2) |f(x, t)| ≤ g(x), where g is integrable.
(3) f(x, t)→ φ(x) as t→ 0.

Then

lim
t→0

1∫
0

f(x, t) dx =

1∫
0

φ(x) dx.

Proof. Let tn → 0. Let φn(x) = f(x, tn). Then phin(x)→ φ(x), and |φ(x)| ≤ g(x),

g integrable. By the dominated convergence theorem,
1∫
0

φn(x) dx→
1∫
0

φ(x) dx. �

Example 5.23. Let f : [0, 1]× [0, 1]→ R. Suppose

(1) f is measurable with respect to x for each fixed t.
(2) f is continuous with respect to t for each fixed x.
(3) |f(x, t)| ≤ g(x), where g is integrable.
(4) f(x, t)→ φ(x) as t→ 0.

Further, suppose ∂f
∂t (x, t) exists for all x, t ∈ [0, 1], is continuous with respect to

t and |∂f∂t (x, t)| ≤ M . Let h(t) =
1∫
0

f(x, t) dx. Then h is differentiable and dh
dt =

1∫
0

∂f
∂t (x, t) dx. That is,

d

dt

1∫
0

f(x, t) dx =

1∫
0

∂f

∂t
(x, t) dx.

Proof. h(t+τ)−h(t)
τ =

1∫
0

f(x,t+τ)−f(x,t)
τ dx =

1∫
0

∂f(x,t+θτ)
∂t dx, by the mean value the-

orem. Now, ∂f(x,t+θτ)
∂t

τ→0−−−→ ∂f
∂t (x, t), and |∂f(x,t+θτ)

∂t | ≤ M . By the dominated

convergence theorem, as τn → 0, we get h(t+τn)−h(t)
τn

→
1∫
0

∂f(x,t)
∂t dx. �

6. Differentiation

Theorem 6.1. Let f : [a, b]→ R be monotonically increasing. Then f is differen-
tiable almost everywhere.

Theorem 6.2. Let f be monotonically increasing on [a, b]. Then

b∫
a

f ′(t) dt ≤ f(b)− f(a).

Before the proof, we do the following exercise.
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Exercise 6.3. Let f : R→ R, t fixed. Then

b∫
a

f(x+ t) dx =

b+t∫
a+t

f(y) dy.

First, let f = χE . x ∈ [a, b], x+ t ∈ E ⇒ x+ t ∈ [a+ t, b+ t], x+ t ∈ [a+ t, b+ t]∩E.

Hence
b∫
a

χE(x+ t) dx = µ(E ∩ [a+ t, b+ t]) =
b+t∫
a+t

χE dx.

Proof. By Theorem 6.1, f is differentiable almost everywhere. Define

g(x) =

{
lim
h→0

f(x+h)−f(x)
h , if the limit exists

0, otherwise

Then g = f ′ almost everywhere. Let gn = n(f(x+ frac1n)− f(x)). Then gn → f ′

almost everywhere and gn ≥ 0. By Fatou’s lemma,

b∫
a

lim inf
n→∞

gn dt ≤ lim inf
n→∞

b∫
a

gn(t) dt.

That is,
b∫
a

f ′(t) dt ≤ lim inf
n→∞

b∫
a

gn(t) dt.

Now,

b∫
a

gn(t) dt = n(

b∫
a

f(t+
1

n
) dt−

b∫
a

f(t) dt)

= n(

b+ 1
n∫

a+ 1
n

f(t) dt−
b∫
a

f(t) dt)

= n(

b+ 1
n∫

a

f(t) dt−

a+ 1
n∫

a

f(t) dt)−
b∫
a

f(t) dt)

= n(

b+ 1
n∫

b

f(t) dt+

b∫
a

f(t) dt−

a+ 1
n∫

a

f(t) dt)−
b∫
a

f(t) dt)

= n(

b+ 1
n∫

b

f(t) dt−

a+ 1
n∫

a

f(t) dt)

= f(b)− n

a+ 1
n∫

a

f(t) dt.

Hence
b∫
a

f ′(t) dt ≤ f(b)− lim sup
n→∞

n
a+ 1

n∫
a

f(t) dt. Now,
a+ 1

n∫
a

f(t) dt ≥ 1
nf(a). Hence

b∫
a

f ′(t) dt ≤ f(b)− lim sup
n→∞

n · 1
nf(a) = f(b)− f(a). �
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Remark 6.4. Strict inequality can hold in Theorem 6.2 as in the case of the Cantor
function.

Definition 6.5. Let f : [a, b] → R, and P = {a = x0 < x1 < · · · < xn = b} be

a partition of [a, b]. Let t(P, f) =
n∑
i=1

|f(xi) − f(xi=1)| and T ba(f) = sup
P

t(P, f).

T ba(f) is called the total variation of f over [a, b], and f is said to be of bounded
variation over [a, b] if T ba(f) <∞.

Example 6.6. (1) If f is Lipschitz continuous, it is of bounded variation.
(2) Any monotonic function is of bounded variation with T ba(f) = f(b)− f(a)

or f(a)− f(b).
(3) Any continuously differentiable function or differentiable function with bounded

derivative is of bounded variation.

Example 6.7. Let

f(x) =

{
x2 sin 1

x2 , 0 ≤ x ≤ 1

0, x = 0

Note that f ′ is not bounded and blows up near 0. Claim: f is not of bounded

variation. Let P = {0, 1} ∪ {
√

2
π(2k+1) : 0 ≤ k ≤ n}. For each k,

|f(xk)− f(xk)| = | 2

π(2k + 1)
sin

(2k + 1)π

2
− 2

π(2k − 1)
sin

(2k − 1)π

2
|

=
2

π(2k + 1)
+

2

π(2k − 1)

=
2

π
(

2k − 1 + 2k + 1

(2k − 1)(2k + 1)
)

=
2

π

4k

4k2 − 1

≥ 8

π

k

4k2

=
2

πk
.

Hence
n∑
k=1

|f(xk)− f(xk−1)| ≥ 2
π

n∑
k=1

1
k →∞ as n→∞.

Proposition 6.8. (1) If f is of bounded variation, then it is bounded.
(2) Let If f, g are of bounded variation, the so are f + g and fg.

Proof. (1) Let t ∈ [a, b], and P = {a, t, b}. Then |f(t)− f(a)|+ |f(b)− f(t)| ≤
T ba(f). Hence |f(x)| ≤ |f(a)|+ T ba(f) <∞, ∀t.

(2) f + g is of bounded variation by the triangular inequality. Consider fg.

|fg(xi)− fg(xi−1)| ≤ |f(xi)(g(xi)− g(xi−1))|+ |(f(xi)− f(xi−1))g(xi−1)|
≤ ‖f‖∞|g(xi)− g(xi−1)|+ ‖g‖∞|f(xi)− f(xi−1)|

�

For r ∈ R+, let r+ = max {r, 0} and r− = −min {r, 0}. Then r = r+ − r− and
|r| = r+ + r−.
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For a partition P, Let

P (P, f) =

n∑
i=1

(f(xi)− f(xi−1))+

and

N(P, f) =

n∑
i=1

(f(xi)− f(xi−1))−.

Then P (P, f) + N(P, f) = t(P, f), and P (P, f) − N(P, f) = f(b) − f(a). Let
P ba(f) = sup

P
P (P, f) and N b

a(f) = sup
P

N(P, f).

Proposition 6.9. Let f be of bounded variation on [a, b]. Then

T ba(f) = P ba(f) +N b
a(f)

and

f(b)− f(a) = P ba(f)−N b
a(f).

Proof. Fix a partition P. Then P ba −N b
a = f(b)− f(a). Hence

P = N + (f(b)− f(a)) ≤ N b
a(f) + f(b)− f(a).

Hence

P ba(f) ≤ N b
a(f) + f(b)− f(a).

Similarly,

N b
a(f)− P ba(f) ≤ f(a)− f(b).

Hence

P ba(f)−N b
a(f) = f(b)− f(a).

Now, t(P, f) = P (P, f) +N(P, f) ≤ P ba(f) +N b
a(f). Hence

T ba(f) ≤ P ba(f) +N b
a(f).

Now,

T ba(f) ≥ t(P, f)

= P (P, f) +N(P, f)

= P (P, f) + (P (P, f)− (f(b)− f(a)))

= 2P (P, f)− (f(b)− f(a))

= 2P (P, f)− (P ba(f)−N b
a(f)).

Taking the supremum over all partitions P, we get

T ba(f) ≥ 2P ba(f)− P ba(f) +N b
a(f)

= P ba(f) +N b
a(f).

�

Consider the interval [a, b] and x, y ∈ (a, b) such that x < y. Then [a, x], [a, y] ⊆
[a, b] and T xa (f) ≤ T ya (f), P xa (f) ≤ P ya (f), and Nx

a (f) ≤ Ny
a (f). Now, f(a)−f(a) =

P xa (f)−Nx
a (f). Hence f(x) = (P xa (f) + f(a))−Nx

a (f), where both (P xa (f) + f(a))
and Nx

a (f) are monotonic. Hence we have the following theorem:

Theorem 6.10. f is of bounded variation on [a, b] iff f is the difference of two
mononically increasing functions.

Corollary 6.11. If f is of bounded variation, then f ′ exists almost everywhere.
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Proposition 6.12. If f is of bounded variation, then

b∫
a

|f ′| dx ≤ T ba(f).

If f is continuously differentiable, then

b∫
a

|f ′| dx = T ba(f).

Proof. We have f(x) − f(a) = P xa (f) − Nx
a (f). Hence f ′(x) = P xa (f)′ − Nx

a ()f ′.
Hence |f ′(x)| = |P xa (f)′| + |Nx

a ()f ′|. But as P xa (f), Nx
a (f) are increasing, their

derivatives are non-negative. Hence |f(x)′| ≤ P xa (f)′ + Nx
a (f)′. Hence |f(x)′| ≤

T xa (f)′. So we have
b∫
a

|f ′| dx ≤
b∫
a

(T xa )′ dx

≤ T ba(f)− T aa (f)

= T ba(f).

Next, let f be continuously differentiable. Let P be any partition. Then

f(xi)− f(xi−1) =

xi∫
xi

f ′(t) dt

and

|f(xi)− f(xi−1)| ≤
xi∫
xi

|f ′(t)| dt.

Summing over i, we get

t(P, f) =

n∑
i=1

|f(xi)− f(xi−1)| ≤
b∫
a

|f ′(t)| dt.

Taking supremum over all partitions, we get

T ba(f) ≤
b∫
a

|f ′(t)| dt.

�

6.1. Vector Valued Maps. Let f : [a, b]→ RN , f = (f1, f2, · · · , fN ) and |f(x)| =

(
N∑
i=1

|fi(x)|2)
1
2 . Let P be a partition of [a, b] and t(P, f) =

n∑
i=1

|f(xi) − f(xi−1)|.

Then f is of bounded variation iff sup
P

t(P, f) <∞.

Lemma 6.13. Let f : [a, b]→ RN . Then

|
b∫
a

f dx| ≤
b∫
a

|f | dx.
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Proof. Let yi =
b∫
a

fi dx. Then
b∫
a

f dx = y = (y1, · · · , yN ). |
b∫
a

f dx|2 = |y|2 =

N∑
i=1

|yi|2 =
N∑
i=1

yi
b∫
a

fi dx =
b∫
a

N∑
i=1

yifi(x) dx ≤
b∫
a

|y||f | dx = |y|
b∫
a

|f | dx. If y = 0, the

proof is clear. Else, by dividing, we get

|
b∫
a

f dx| ≤
b∫
a

|f | dx.

�

Theorem 6.14. If f : [a, b]→ RN is of bounded variation and continuously differ-
entiable, then

T ba(f) =

b∫
a

|f ′(x)| dx.

Proof. Consider any partition P. Then
n∑
i=1

|f(xi) − f(xi−1)| =
n∑
i=1

|
xi∫

xi−1

f ′(t) dt| ≤

n∑
i=1

xi∫
xi−1

|f ′(t)| dt =
b∫
a

|f ′(t)| dt. Hence, T ba(f) ≤
b∫
a

|f ′(t)| dt.

Since f is continuously differentiable on [a, b], f ′ is uniformly continuous on [a, b].
Hence for ε > 0,∃δ > 0 such that |x − y| < δ ⇒ |f(x) − f(y)| < ε. Choose P =
{a = x0 < x1 < · · · < xn = b} to be a partition such that ∀i,∆xi = xi − xi−1 < δ.
Let t ∈ [xi−1, xi]. Then |f ′(t)| < |f ′(xi)|+ ε. Hence

Xi∫
xi−1

|f ′(t)| dt ≤ |f ′(xi)|∆xi + ε∆xi.

That is,

Xi∫
xi−1

|f ′(t)| dt− ε∆xi ≤ |f ′(xi)|∆xi

= |
xi∫

xi−1

f ′(xi) dt|

= |
xi∫

xi−1

(f ′(t) + f ′(xi)− f ′(t)) dt|

≤ |
xi∫

xi−1

f ′(t) dt|+ |
xi∫

xi−1

f ′(xi)− f ′(t) dt|

≤ |f(xi)− f(xi−1)|+
xi∫

xi−1

|f ′(xi)− f(t)| dt

≤ |f(xi)− f(xi−1)|+ ε∆xi.
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Hence
b∫
a

|f ′(t)| dt− ε(b− a) ≤ T (P, f) + ε(b− a).

Thus,
b∫
a

|f ′(t)| dt ≤ T (P, f) + 2ε(b− a) ≤ T ba(f) + 2ε(b− a).

Hence,
b∫
a

|f ′(t)| dt ≤ T ba(f). �

Let γ be a curve in R2. That is, γ : [0, 1] → R2. γ is a rectifiable arc iff γ is of
bounded variation and the length of γ is T 1

0 (γ). If γ is a continuously differentiable

function, then its length=
1∫
0

|γ′(t)| dt.

Let γ(t) = (x(t), y(t)). Then γ′(t) = (x′(t), y′(t)) and |γ′(t)| =
√
x′2 + y′2.

Hence length of γ =
1∫
0

√
x′2 + y′2 dt =

1∫
0

√
1 + ( dydx )2 dx

Proposition 6.15. Let f ≥ 0 be integrable. Then given ε > 0,∃δ > 0 such that if
µ(E) < δ, then

∫
E

f dµ < ε.

Proof. (1) First, assume f is bounded. THen ∃K > 0 such that |f | ≤ K. Then∫
E

f dµ ≤ Kµ(E). So, in this case, we choose δ < ε
K .

(2) In the general case, Let

fn(x) =

{
f(x), f(x) ≤ n
n, f(x) > n

Then fn is bounded, fn ≤ f and fn ↗ f . By the monotonone convergence
theorem,

∫
fn →

∫
f . So given ε > 0, choose N such that ∀n ≥ N,

∫
X

f −∫
X

fn <
ε
2 . Consider the corresponding fN . By the bounded case, ∃δ > 0

such that µ(E) < δ ⇒
∫
E

fN dµ <
ε
2 . Hence, if µ(E) < δ,∫

E

f dµ =

∫
E

f − fN dµ+

∫
E

fN dµ

≤
∫
X

f − fN dµ+

∫
E

fN dµ

< ε.

�

Proposition 6.16. Let f : R→ R be continuous. Then

lim
h→0

1

h

x+h∫
x

f(t) dt = f(x).
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Proof. Let ε > 0 and x ∈ R. Then ∃δ > 0 such that |t− x| < δ ⇒ |f(t)− f(x) < ε.

| 1
h

x+h∫
x

f(t) dt− f(x)| = | 1
h

x+h∫
x

f(t)− f(x) dt|

≤ 1

h

x+h∫
x

|f(t)− f(x)| dt

≤ 1

h
εh,

by choosing h small enough. �

Proposition 6.17. Let f be integrable on [a, b]. Define F (x) =
x∫
a

f(t) dt. Then F

is a uniformly continuous function of bounded variation.

Proof. Let x < y. Then |F (x) − F (y)| = |
y∫
x

f(t) dt| ≤
y∫
x

|f(t)| dt. By Proposition

6.15, given ε > 0,∃δ > 0 such that |x − y| < δ ⇒
y∫
x

|f(t)| dt < ε. Hence F is

uniformly continuous. Next, let P be a partition of [a, b]. THen

n∑
i=1

|F (xi)− F (xi−1)| =
n∑
i=1

|
xi∫

xi−1

f(t) dt|

≤
n∑
i=1

xi∫
xi−1

|f(t)| dt

=

b∫
a

|f(t)| dt.

Hence F is of bounded variation. �

Proposition 6.18. Let f be integrable on [a, b]. Assume that ∀x ∈ [a, b],
x∫
a

f(t) dt =

0. Then f = 0 almost everywhere.

Proof. Let E+ = {x : f(x) > 0}. We will show that µ(E+) = 0. Similarly, we show
that E− = {x : f(x) < 0} has measure zero. Assume µ(E+) > 0. Then ∃F closed,
F ⊆ E+ and µ(F ) > 0. Let U = (a, b) \ F . Then U is open and U ∩ F = ∅.

Also,
b∫
a

f(t) dt =

∫
U

f(t) dt+

∫
F

f(t) dt.

Hence ∫
U

f(t) dt = −
∫
F

f(t) dt 6= 0.

Let U =
∞⋃
n=1

[an, bn), a disjoint union. Let gn = f �
n⋃
i=1

[ai, bi). Then |gn| ≤ |f |,

f integrable and gn → f � U . By the dominated convergence theorem,
∫
U

gn dµ →
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∫
U

f dµ. Now, 0 6=
∫
U

f(t) dt =
∞∑
n=1

bn∫
an

f(t) dt. Hence ∃n such that
bn∫
an

f(t) dt 6= 0.

That is,
bn∫
a

f(t) dt−
an∫
a

f(t) dt 6= 0, a contradiction. �

Proposition 6.19. Let f be a bounded measurable function on [a, b] and let F (x) =
x∫
a

f(t) dt. Then F ′ = f almost everywhere.

Proof. By Proposition 6.17, F is of bounded variation. Hence F ′ exists almost
everywhere. Define

fn(x) = n(F (x+
1

n
)− F (x)) = n

x+ 1
n∫

x

f(t) dt.

Suppse |f | ≤ K. Then f| ≤ K and f → F ′ almost everywhere. By the dominated
convergence theorem, ∀c ∈ [a, b],

c∫
a

F ′(t) dt = lim
n→∞

c∫
a

fn(t) dt

= lim
n→∞

n

c∫
a

(F (t+
1

n
)− F (t)) dt

= lim
n→∞

n(

c+ 1
n∫

c

F (t) dt−

a+ 1
n∫

a

F (t) dt)

= F (c)− F (a)

=

c∫
a

f(t) dt ∀c ∈ [a, b].

By Proposition 6.18, F ′ = f almost everywhere. �

Theorem 6.20. Suppose f is integrable on [a, b] and F (x) =
x∫
a

f(t) dt. Then

F ′ = f almost everywhere.

Proof. Assume without loss of generality that f ≥ 0. Define

fn(x) =

{
f(x), f(x) ≤ n
n, f(x) > 0

Then fn ↗ f and f − fn ≥ 0, fn bounded for all n. Let Gn(x) =
x∫
a

(f − fn)(t) dt.

Then ∀n,Gn is monotonically increasing and thus differentiable almost everywhere.

By Proposition 6.1, (
x∫
a

fn(t) dt)′ = fn almost everywhere. Now, F (x) =
∫ x
a

(f −

fn)(t) dt+
x∫
a

fn(t) dt = Gn(x) +
x∫
a

fn(t) dt. Hence, F ′ = G′+ fn ≥ fn ∀n since G′n is

positive. Hence F ≥ f . Now, F (b) ≥
b∫
a

F ′(x) dx ≥
b∫
a

f(x) dx = F (b)−F (a) = F (b),

where the first inequality holds since F is monotonically increasing due to the fact
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that f ≥ 0. Hence, equality holds and
b∫
a

F ′(x) dx =
b∫
a

f(x) dx. But F ′ − f ≥ 0 ⇒

F ′ = f almost everywhere. �

Definition 6.21 (Absolutely continuous). Suppose F is a function such that given
ε > 0,∃δ > 0 such that if {(xk, yk)} is a disjoint collection of intervals such that
n∑
k=1

yk − xk < δ, then
n∑
k=1

|F (yk) − F (xk)| < ε. Then F is said to be absolutely

continuous. Any indefinite integral is absolutely continuous.

Proposition 6.22. If f is absolutely continuous, then f is of bounded variation.

Theorem 6.23. Suppose f is absolutely continuous and f ′ = 0 almost everywhere.
Then f is a constant.

Theorem 6.24. Suppose F is absolutely continuous. Then

F (x) = F (a) +

x∫
a

F ′(t) dt.

Proof. F is of bounded variation and hence F = F1−F2, where Fi are monotonically
increasing.

b∫
a

|F ′| ≤
b∫
a

|F ′1|+ |F ′2|

=

b∫
a

F ′1 +

b∫
a

F ′2

≤ F1(b)− F1(a) + F2(b)− F2(a)

= F (b)− F (a).

Hence F ′ is integrable. Let G(x) =
x∫
a

F ′(t) dt. Then G′ = F ′ almost everywhere.

Also, F − G is absoltuely continuous. By Theorem 6.23, F = G + c. Hence

F (x) =
x∫
a

F ′(t) dt+ constant . Take x = a to get F (x) =
x∫
a

F ′(t) dt+ F (a). �

7. Product Spaces

8. Lp Spaces


